

Technische Hinweise

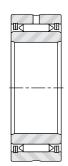
Die vollnadeligen Nadellager mit massiven durchgehärteten Laufringen aus hochwertigem Wälzlagerstahl haben hohe dynamische und statische Tragzahlen und sind besonders für einen robusten Einsatz bei Schwingungen und Stößen geeignet.

Besonders bei oszillierenden Bewegungen sind diese Nadellager zu empfehlen. Bei geringer Verkippung und in Verbindung mit einer konvexen Innenlaufbahn können diese Lager auch bei höheren Drehzahlen eingesetzt werden.

Der Nadelrückhalt am Außenring bietet Sicherheit bei der Handhabung und Montage dieser Lager.

Diese Nadellager werden sowohl ohne wie auch ab 12 mm Bohrung mit Innenring geliefert. Die kompletten Standard-Nadellager der Baureihen NA haben einen Innenring mit konvexer Laufbahn (Nachsetzzeichen R6). Verlängerte Innenringe oder solche mit Schmierbohrung bei zylindrischer Laufbahn können im Sonderfall für Nadellager der Baureihe RNA geliefert werden. Diese Innenringe sind getrennt zu bestellen, und es ist auf den besonderen Anwendungsfall hinzuweisen.

Normen:

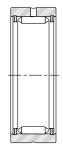

• ISO 1206 - Nadellager - leichte und mittlere Baureihen - Maße und Toleranzen

Vollnadelige Nadellager ohne Innenring

Der als Laufbahn dienende Wellenbereich muss eine genügende Oberflächenbeschaffenheit und Oberflächenhärte aufweisen. Eine Härte von 58 bis 64 HRC sichert die in den Maßtafeln angegebenen Tragzahlen. Geringere Härtewerte führen zu einer Verringerung der dynamischen und statischen Tragzahlen (siehe Abschnitt technische Hinweise).

Im Falle einer Verkippung der Wellen- zur Gehäuseachse kann mittels Eintauchschliff auf der Welle eine konvexe Innenlaufbahn vorgesehen werden. Das hierzu notwendige Profil der Schleifscheibe kann durch eine schräg zur Drehachse stehende Abrichtvorrichtung erreicht werden. Eine konvexe Innenlaufbahn, die eine Verkippung von 1 zu 1000 auslässt, beeinträchtigt noch nicht die Tragfähigkeit der Nadellager. Eine konvexe Laufbahn, die eine größere Verkippung zulässt, führt zu einer Verringerung der Tragfähigkeit. Nähere Auskünfte erteilt unsere Anwendungstechnik.

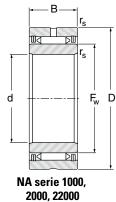
Bauformen Vollnadelige Nadellager mit Innenring

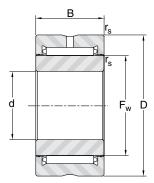


NA Serie 1000, 2000. 22000

NA Serie 3000

Vollnadelige Nadellager ohne Innenring




RNA Serie 3000

mit Innenring

Serie NA 1000, NA 2000, NA 22000, NA 3000

NA serie 3000

Welle Rezeichnung		d	D	В		r _{s min.}	Tragzahlen kN		Grenzdrehzahlen min-1		Gewicht
Ø mm	Bezeichnung	mm	mm	mm	mm	mm	dynamisch	statisch		 r	kg
	NA 4040 (4)	10	00	45	47.0	0.05	C 11.0	C ₀	Öl	Fett	0.050
12	NA 1012 (1)	12	28	15	17.6	0.35	11.0	16.5	22000	14000	0.050
15	NA 1015 (1)	15	32	15	20.8	0.65	12.4	19.5	18000	12000	0.044
	NA 2015 (1)	15	35	22	22.1	0.65	23.5	37.5	17000	11000	0.082
17	NA 1017 ⁽¹⁾	17	35	15	23.9	0.65	13.7	22.5	16000	10000	0.047
20	NA 1020	20	42	18	28.7	0.65	19.3	33.5	13000	8600	0.084
	NA 2020	20	42	22	28.7	0.65	28.5	49.0	13000	8600	0.104
	NA 1025	25	47	18	33.5	0.65	21.5	39.0	11000	7200	0.097
25	NA 2025	25	47	22	33.5	0.65	33.0	60.0	11000	7200	0.122
	NA 22025	25	47	30	33.5	0.65	52.0	94.0	11000	7200	0.170
	NA 1030	30	52	18	38.2	0.65	23.5	44.5	10000	6500	0.107
30	NA 2030	30	52	22	38.2	0.65	34.5	66.0	10000	6500	0.139
30	NA 22030	30	52	30	38.2	0.65	57.0	108	10000	6500	0.193
	NA 3030	30	62	30	44.0	0.65	64.0	125	8600	5600	0.309
	NA 1035	35	58	18	44.0	0.65	26.0	51.0	8600	5600	0.127
0.5	NA 2035	35	58	22	44.0	0.65	38.0	75.0	8600	5600	0.160
35	NA 22035	35	58	30	44.0	0.65	63.0	124	8600	5600	0.225
	NA 3035	35	72	36	49.7	0.65	90.0	183	7600	4900	0.545
	NA 1040	40	65	18	49.7	0.85	28.5	58.0	7600	4900	0.160
	NA 2040	40	65	22	49.7	0.85	41.5	85.0	7600	4900	0.200
40	NA 22040	40	65	30	49.7	0.85	68.0	140	7600	4900	0.278
	NA 3040	40	80	36	55.4	0.85	97.0	204	6900	4500	0.672
	NA 1045	45	72	18	55.4	0.85	30.5	65.0	6900	4500	0.193
45	NA 2045	45	72	22	55.4	0.85	45.0	95.0	6900	4500	0.242
	NA 3045	45	85	38	62.1	0.85	105.0	230	6100	4000	0.710
	NA 1050	50	80	20	62.1	0.85	33.0	73.0	6100	4000	0.418
50	NA 2050	50	80	28	62.1	0.85	64.0	142	6100	4000	0.603
50	NA 3050	50	90	38	68.8	0.85	113.0	255	5500	3600	1.22

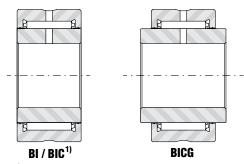
⁽¹⁾ ohne Schmierbohrung und Schmiernut

Technische Hinweise

Innenringe

Die Innenringe aus hochwertigem und durchgehärtetem Wälzlagerstahl erübrigen eine Wärmebehandlung der Welle und erlauben die volle Tragfähigkeit der Nadellager auszunützen.

Innenringe mit konvexer Laufbahn "R6" der kompletten Nadellager der Baureihen NA.


Diese Innenringe ohne Schmierbohrung haben dieselbe Breite wie die Außenringe der Baureihen NA 1000, 2000, 22000 sowie 3000 und lassen eine Verkippung (Fluchtfehler) von 1:1000, kurzzeitig von 2:1000 (Durchbiegung bei Überlastung) zu. Der Innen- und Außenring sollte axial in einer Ebene liegen (maximal zulässiger Versatz von Innen- zu Außenring 5 % der Lagerbreite).

Innenringe mit zylindrischer Laufbahn

Innenringe mit zylindrischer Laufbahn und den gleichen Abmessungen wie die der konvexen Innenringe werden auf Anfrage geliefert:

- Innenringe mit Schmierbohrung
- Innenringe mit größerer Breite als der entsprechende Lageraußenring.

Diese Innenringe lassen einen seitlichen Versatz zu den Außenringen zu (z.B. axiale Ausdehnung) oder ermöglichen eine Längsbewegung bei gleichzeitiger Drehbewegung. Für letztgenannten Anwendungsfall bitte unseren technischen Beratungsdienst anfordern.

BI = StandardinnenringBIC = Innenring mit Schmierbohrung

Die Anwendung dieser zylindrischen Innenringe in Verbindung mit den Standardlagern der Baureihen RNA 1000, 2000, 22000 und 3000 erfordert ein genaues Fluchten der Gehäusebohrungen und lässt eine Wellendurchbiegung während des Betriebes nicht zu. Sollte die Anwendung dieser Innenringe nicht unbedingt erforderlich sein, ist immer ein komplettes Lager NA mit konvexem Innenring "R6" ohne Schmierbohrung zu verwenden. Sollte eine Schmierung durch die Welle notwendig sein, kann der zylindrische Innenring mit Schmierbohrung durch einen konvexen Innenring ersetzt werden, wenn die Schmierbohrung neben der Stirnseite des Innenringes vorgesehen ist.

Toleranzen der Innenringe

Die Innen- und Außenringe der vollnadeligen Nadellager sind entsprechend der Toleranzklassen "Normal" nach ISO Empfehlung 492 (Klasse 0 nach DIN 620) ausgeführt. Engere Toleranzen entsprechend den Klassen 6, 5 und 4 können für besondere Genauigkeitsausführungen berücksichtigt werden (Zusatzzeichen P6, P5, P4).

Radiale Lagerluft

Nadellager ohne Innenring

Die radiale Lagerluft eines Nadellagers ohne Innenring ergibt sich aus der Differenz zwischen dem Nadelhüllkreis und dem Wellendurchmesser. Der Nadelhüllkreis der Standard-Nadellager RNA sowie die für die Welle empfohlenen Toleranzen ergeben eine für die meisten Anwendungsfälle ausreichende Lagerluft.

Für besondere Anwendungsfälle (Genauigkeit, Einbaubedingungen, usw.) liefern wir Nadellager mit einem Hüllkreis:

- In der unteren Hälfte der Normalklasse (RNA..TB)
- In der oberen Hälfte der Normalklasse (RNA..TC).

Nadellager ohne Innenring der Klasse TB, mit einer Welle der Toleranz k5 eingebaut, führen zu einer verringerten Lagerluft, können aber bei bestimmten Fällen angewendet werden.

Nenr	nmaß	Toleran	zen der Nadelhü	illkreise
	Ci m	Normalklasse µm	Klasse TB µm	Klasse TC µm
über	bis			
5	15	+20 + 40	+20 + 31	+ 29 + 40
15	25	+20 + 43	+20 + 33	+ 30 + 43
25	30	+25 + 48	+25 + 38	+ 35 + 48
30	35	+30 + 53	+30 + 43	+ 40 + 53
35	60	+35 + 58	+35 + 48	+ 45 + 58
60	80	+45 + 73	+45 + 60	+ 58 + 73
80	115	+50 + 78	+50 + 65	+ 63 + 78
115	180	+60 + 88	+60 + 75	+ 73 + 88
180	220	+70 +103	+70 + 88	+ 85 +103
220	270	+80 +113	+80 + 98	+ 95 +113
270	350	+90 +128	+90 +110	+108 +128
	nnungs- spiel	RNA 1020	RNA 1020 TB	RNA 1020 TC

Ein eingeengter Hüllkreis in den Toleranzen 10, 15 oder 20 µm (entsprechend der Abmessung) kann für besondere Genauigkeitsanwendungen berücksichtigt werden. Ist eine größere Lagerluft als "normal" notwendig, kann der Wellendurchmesser in einer niedrigeren Toleranzklasse als h5 bzw. g5 ausgeführt werden.

Technische Hinweise

Komplette Nadellager mit Innenring

Die kompletten Nadellager der Standardbaureihen NA haben eine für die meisten Anwendungsfälle genügende radiale Lagerluft. Diese Lager können im Bedarfsfall geliefert werden:

- Mit einer Lagerluft in der unteren Hälfte der Normalklasse (Bezeichnung: NA...TB)
- mit einer Lagerluft in der oberen Hälfte der Normalklasse (Bezeichnung: NA...TC).

Nadellager NA...TB sowie NA...TC mit einer Bohrung >130 mm werden nur auf Anfrage hergestellt.

Radiale Lagerluft der vollnadeligen Nadellager mit balligem Innenring "R6".

Damgo	Jamgen mileming no.											
		Serie	e 1 000, 2	2 000, 22	000							
	rung nring ß Di	Norma	Iklasse	Klass	se TB	Klasse TC						
m	m	μι	m	μι	m	μι	m					
über	r bis min.		max.	min.	max.	min.	max.					
12	20	20	50	20	35	35	50					
20	25	25	60	25	43	42	60					
25	30	30	65	30	48	47	65					
30	50	35	70	35	53	52	70					
50	55	45	85	45	65	65	85					
55	65	45	90	45	68	67	90					
65	70	45	95	45	70	70	95					
70	105	50	100	50	75	75	100					
105	125	60	115	60	88	87	115					
120	140	80	145	80	113	112	145					
140	170	100	165									
170	190	120	185									
190	210	130	200									
210	230	130	205									
230	260	160	235									
260	290	180	260									
290	310	180	265									

			Serie	3 000				
Bohi Innei Ma	•	Normalklasse		Klass	se TB	Klasse TC		
m	m	μm		μι	m	μm		
über	bis min.		max.	min.	max.	min.	max.	
30	45	35	70	35	53	52	70	
45	55	45	85	45	65	65	85	
55	65	45	90	45	68	67	90	
65	70	50	95	50	73	72	95	
70	100	50	100	50	75	75	100	
100	105	60	110	60	85	85	110	
105	130	60	115	60	88	87	115	
130	140	80	145	80	113	112	145	
140	170	100	165					
170	190	120	185					
190	210	130	200					
210	230	130	200					
230	260	160	235					
260	290	180	260					
290	310	180	265					

Radiale Lagerluft der vollnadeligen Nadellager mit zylindrischem Innenring (nicht R6).

Serie 1 000, 22 000											
Boh Inne Ma	•	Normalklasse			se TB	Klasse TC					
m	m	μm		μι	m	μι	m				
über	bis	min.	max.	min.	max.	mini.	max.				
12	17	20	50	20	35	35	50				
17	20	30	60	30	45	45	60				
20	25	35	70	35	53	52	70				
25	30	40	75	40	58	57	75				
30	35	45	80	45	63	62	80				
35	50	50	85	50	68	67	85				
50	55	60	100	60	80	80	100				
55	65	60 105		60	83	82	105				
65	70	60 110		60	85	85	110				
70	90	65	115	65	90	90	115				

			Serie	2 000				
Bohi Innei Ma	•	Normalklasse		Klass	se TB	Klasse TC		
m	m	μm		μ	m	μ	m	
über	bis	min.	max.	min.	max.	min.	max.	
15	20	30	60	30	45	45	60	
20	25	35	70	35	53	52	70	
25	30	40	75	40	58	57	75	
30	35	45	80	45	63	62	80	
35	50	50	85	50	68	67	85	
50	55	60	100	60	80	80	100	
55	65	60	105	60	83	82	105	
65	70	60	110	60	85	85	110	
70	105	65	115	65	90	90	115	
105	125	75	130	75	103	102	130	
125	140	95	160	95	128	127	160	
140	170	125	190					
170	190	145	210					
190	210	160	230					
210	230	160	235					

			Serie	3 000				
Bohi Inner Mai	•	Normalklasse		Klass	se TB	Klasse TC		
m	m	μm		μ	m	μm		
über	bis	min.	max.	min.	max.	min.	max.	
30	45	50	85	50	68	67	85	
45	55	60	100	60	80	80	100	
55	65	60	105	60	83	82	105	
65	70	65	110	65	88	87	110	
70	100	65	115	65	90	90	115	
100	105	75	125	75	100	100	125	
105	130	75	130	75	103	102	130	
130	140	95	160	95	128	127	160	
140	170	125	190					
170	190	145	210					
190	210	160	230					
210	230	160	235					
230	260	190	265					
260	290	210	290					
290	310	210	295					

Technische Hinweise

Lagermontage

Allgemeine Voraussetzungen

Die Montage von Nadellagern, mit oder ohne Innenringe, erfordert im allgemeinen eine Bearbeitung der Welle oder der Lauffläche gemäß IT5 oder IT6. Die Gehäusebohrung sollte IT6 oder IT7 entsprechen. Weitere Qualitätsanforderungen sind im Kapitel "Grundlagen der Wälzlagertechnik" dieses Kataloges beschrieben.

Einbaupassungen

Es wird empfohlen, Nadellager mit einem Übergangssitz im Gehäuse zu montieren, wenn Gehäuse und Lastrichtung relativ zueinander stillstehen (Punktlast), oder mit einem Festsitz, wenn Gehäuse und Lastrichtung relativ zueinander drehen (Umfangslast). Tabelle 2 zeigt die empfohlenen Toleranzen für die Gehäusebohrung

Tabelle 2: Einbautoleranzen für Lager ohne Innenring

Bewe- gungsverhält- nisse	Nennmaß der Gehäusebohrung D mm	Gehäusetole- ranz nach ISO	Wellennenn- durchmesser F mm	Wellentole- ranz nach ISO
Lastrichtung gegenüber Gehäuse un- veränderlich	Alle Durchmesser	J6	Alle Durchmesser	h5
Lastrichtung rotiert gegenüber Gehäuse	Alle Durchmesser	M6	Alle Durchmesser	g5

Hinweis:

Es ist sicherzustellen, dass die Wahl der Lagerluft an die Betriebsbedingungen angepasst ist. Die Anforderung an die Welle und das Gehäuse finden Sie im Kapitel "Technische Hinweise".

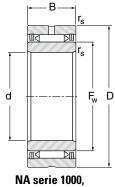
und für die Wellenlauffläche für Lager ohne Innenring. Tabelle 3 zeigt die empfohlenen Wellentoleranzen für die beiden oben beschriebenen Montagefälle für Lager mit Innenringen.

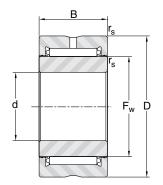
Für besondere Betriebsbedingungen können andere Passungen erforderlich sein:

- 1. Extrem hohe Radialbelastungen
- 2. Stoßbelastungen
- 3. Ungleichmäßige Temperaturverteilung im Lager
- 4. Gehäusewerkstoff mit einem anderen Wärmeausdehnungskoeffizienten
- 5. Oszillierende Bewegungen

Tabelle 3: Einbautoleranzen für Lager ohne Innenring

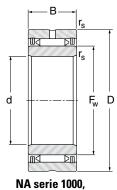
Bewegungs verhältnisse	durch	nnenn- messer d nm	Wellen- toleranz nach ISO	Nennmaß der Gehäuse- bohrung D mm	Gehäuse- toleranz nach ISO
Lastrichtung gegenüber Gehäuse unveränderlich	Al Durchr		h5 (h6)	Alle Durch- messer	J6
	>	≤			
		40	k5	Alle	
Lastrichtung rotiert gegenüber Gehäuse	40	100	m5	Durchmes-	M6
3.01 111 00	100	140	m5	ser	
	140	-	n6		

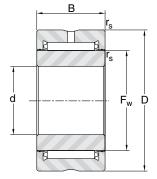

Hinweis:


Es ist sicherzustellen, dass die Wahl der Lagerluft an die Betriebsbedingungen angepasst ist. Die Anforderung an die Welle und das Gehäuse finden Sie im Kapitel "Technische Hinweise".

Vollnadelige Nadellager mit Innenring Serie NA 1000, NA 2000, NA 22000, NA 3000

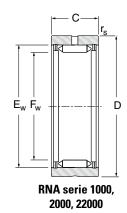
2000, 22000

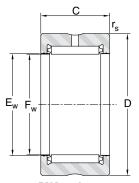

NA serie 3000


Welle		d	D	В	F _w	r .	Tragzał	nlen kN		ehzahlen	Gewicht
Ø	Bezeichnung	mm	mm	mm	mm	r _{s min.} mm	dynamisch	statisch		n ⁻¹	kg
mm							С	C ₀	ÖI	Fett	
	NA 1055	55	85	20	68.8	0.85	35.5	80.0	5500	3600	0.258
55	NA 2055	55	85	28	68.8	0.85	69.0	157	5500	3600	0.361
	NA 3055	55	95	38	72.6	0.85	117.0	268	5200	3400	0.782
	NA 1060	60	90	20	72.6	0.85	37.0	85.0	5200	3400	0.283
60	NA 2060	60	90	28	72.6	0.85	72.0	165	5200	3400	0.413
	NA 3060	60	100	38	78.3	0.85	123.0	290	4900	3200	0.810
65	NA 2065	65	95	28	78.3	0.85	78.0	184	4900	3200	0.433
05	NA 3065	65	105	38	83.1	0.85	129.0	308	4500	2900	0.865
	NA 1070	70	100	20	83.1	0.85	43.0	103	4500	2900	0.322
70	NA 2070	70	100	28	83.1	0.85	81.0	195	4500	2900	0.470
	NA 3070	70	110	38	88.0	0.85	134.0	325	4300	2800	0.906
75	NA 2075	75	110	32	88.0	0.85	104.0	253	4300	2800	0.767
/5	NA 3075	75	120	38	96.0	0.85	142.0	355	4000	2600	1.098
	NA 1080	80	115	24	96.0	0.85	68.0	170	4000	2600	0.510
80	NA 2080	80	115	32	96.0	0.85	110.0	275	4000	2600	0.694
	NA 3080	80	125	38	99.5	0.85	145.0	365	3800	2500	1.220
85	NA 2085	85	120	32	99.5	1.35	113.0	285	3800	2500	0.787
65	NA 3085	85	130	38	104.7	1.35	150.0	390	3600	2300	1.252
90	NA 2090	90	125	32	104.7	1.35	117.0	300	3600	2300	0.837
90	NA 3090	90	135	43	109.7	1.35	185.0	480	3500	2300	1.522
95	NA 2095	95	130	32	109.1	1.35	120.0	315	3500	2300	0.882
95	NA 3095	95	140	43	114.7	1.35	190.0	505	3300	2100	1.551
100	NA 2100	100	135	32	114.7	1.35	125.0	330	3300	2100	0.677
100	NA 3100	100	145	43	119.2	1.35	195.0	520	3200	2100	1.645
105	NA 2105	105	140	32	119.2	1.35	129.0	340	3200	2100	0.941
105	NA 3105	105	150	45	124.7	1.35	203.0	550	3000	2000	1.762

Vollnadelige Nadellager mit Innenring Serie NA 1000, NA 2000, NA 22000, NA 3000

NA serie 1000, 2000, 22000

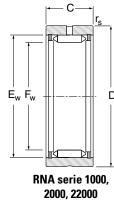

NA serie 3000

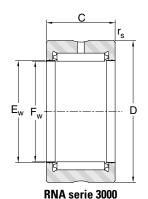

Welle		d	D	В	E	_	Tragzal	nlen kN		ehzahlen	Gewicht
Ø	Bezeichnung	mm	mm	mm	F _w	r _{s min.} mm	dynamisch	statisch	mi	n-1	_ kg
mm							С	C ₀	Öl	Fett	
110	NA 2110	110	145	34	124.7	1.35	133.0	360	3000	2000	1.015
110	NA 3110	110	160	45	132.5	1.35	210.0	580	2900	1900	2.037
445	NA 2115	115	155	34	132.5	1.35	139.0	380	2900	1900	1.205
115	NA 3115	115	165	45	137.0	1.35	215.0	600	2800	1800	2.140
400	NA 2120	120	160	34	137.0	1.35	142.0	395	2800	1800	1.265
120	NA 3120	120	170	45	143.5	1.35	224.0	630	2700	1800	2.107
125	NA 2125	125	165	34	143.5	1.35	145.0	410	2700	1800	1.218
130	NA 2130	130	170	34	148.0	1.35	150.0	425	2600	1700	1.292
440	NA 2140	140	180	36	158.0	1.35	157.0	455	2400	1600	1.478
140	NA 3140	140	205	52	170.5	1.35	290.0	860	2200	1400	3.840
150	NA 2150	150	195	36	170.5	1.35	165.0	490	2200	1400	1.790
160	NA 2160	160	205	36	179.3	1.35	170.0	515	2100	1400	1.970
170	NA 2170	170	220	42	193.8	1.35	233.0	720	2000	1300	2.570
180	NA 2180	180	230	42	202.6	1.35	240.0	750	1900	1200	2.835
190	NA 2190	190	245	42	216.0	1.35	250.0	800	1800	1200	3.210
200	NA 2200	200	255	42	224.1	1.35	257.0	830	1700	1100	3.560
190	NA 2190	190	245	42	216.0	1.35	250.0	800	1800	1200	3.210
200	NA 2200	200	255	42	224.1	1.35	257.0	830	1700	1100	3.560
190	NA 2190	190	245	42	216.0	1.35	250.0	800	1800	1200	3.210
200	NA 2200	200	255	42	224.1	1.35	257.0	830	1700	1100	3.560

ohne Innenring

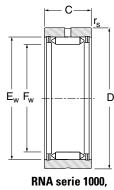
Serie RNA 1000, RNA 2000, RNA 22000, RNA 3000

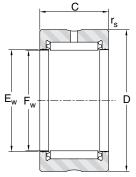
RNA serie 3000


Welle		_	D	С	E _w	_	Tragzal	nlen kN		ehzahlen	Gewicht
Ø	Bezeichnung	F _w mm	mm	mm	mm	r _{s min.} mm	dynamisch	statisch	mi	n-1	kg
mm							С	C ₀	ÖI	Fett	
7.3	RNA 1005 (1)	7.3	16	12	12.3	0.35	3.95	4.45	52000	34000	0.010
9.7	RNA 1007 (1)	9.7	19	12	14.7	0.35	4.80	5.90	39000	25000	0.013
12.1	RNA 1009 (1)	12.1	22	12	17.1	0.35	5.60	7.40	31000	20000	0.018
14.4	RNA 1010 (1)	14.4	24	12	19.4	0.35	6.35	8.90	26000	17000	0.020
17.6	RNA 1012 (1)	17.6	28	15	22.6	0.35	11.0	16.5	22000	14000	0.034
20.8	RNA 1015 (1)	20.8	32	15	25.8	0.65	12.4	19.5	18000	12000	0.044
22.1	RNA 2015 (1)	22.1	35	22	28.1	0.65	23.5	37.5	17000	11000	0.082
23.9	RNA 1017 (1)	23.9	35	15	28.9	0.65	13.7	22.5	16000	10000	0.047
28.7	RNA 1020	28.7	42	18	34.7	0.65	19.3	33.5	13000	8600	0.084
20.7	RNA 2020	28.7	42	22	34.7	0.65	28.5	49.0	13000	8600	0.104
	RNA 1025	33.5	47	18	39.5	0.65	21.5	39.0	11000	7200	0.097
33.5	RNA 2025	33.5	47	22	39.5	0.65	33.0	60.0	11000	7200	0.122
	RNA 22025	33.5	47	30	39.5	0.65	52.0	94.0	11000	7200	0.170
	RNA 1030	38.2	52	18	44.2	0.65	23.5	44.5	10000	6500	0.107
38.2	RNA 2030	38.2	52	22	44.2	0.65	34.5	66.0	10000	6500	0.139
	RNA 22030	38.2	52	30	44.2	0.65	57.0	108	10000	6500	0.193
	RNA 1035	44	58	18	50.0	0.65	26.0	51.0	8600	5600	0.127
44	RNA 2035	44	58	22	50.0	0.65	38.0	75.0	8600	5600	0.160
44	RNA 22035	44	58	30	50.0	0.65	63.0	124	8600	5600	0.225
	RNA 3030	44	62	30	51.0	0.65	64.0	125	8600	5600	0.309
	RNA 1040	49.7	65	18	55.7	0.85	28.5	58.0	7600	4900	0.160
40.7	RNA 2040	49.7	65	22	55.7	0.65	41.5	85.0	7600	4900	0.200
49.7	RNA 22040	49.7	65	30	55.7	0.65	68.0	140	7600	4900	0.278
	RNA 3035	49.7	72	36	56.8	0.65	90.0	183	7600	4900	0.545
	RNA 1045	55.4	72	18	61.4	0.85	30.5	65.0	6900	4500	0.193
55.4	RNA 2045	55.4	72	22	61.4	0.85	45.0	95.0	6900	4500	0.242
	RNA 3040	55.4	80	36	62.5	0.85	97.0	204	6900	4500	0.672


⁽¹⁾ ohne Schmierbohrung und Schmiernut

Vollnadelige Nadellager ohne Innenring Serie RNA 1000, RNA 2000, RNA 22000, RNA 3000


RNA serie 1000,						
2000, 22000						


Welle Tragzahlen kN Grenzdrehzahlen $\mathbf{E}_{\mathbf{w}}$ Gewicht F_w D С r_{s min.} Ø Bezeichnung min-1 statisch dynamisch mm mm mm kg mm C ÖI C_0 Fett **RNA 1050** 62.1 80 20 68.1 0.85 33.0 73.0 6100 4000 0.255 **RNA 2050** 62.1 62.1 80 28 68.1 0.85 64.0 142 6100 4000 0.375 **RNA 3045** 62.1 85 38 69.2 0.85 105 230 6100 4000 0.710 0.258 **RNA 1055** 68.8 85 20 74.8 0.85 35.5 80.0 5500 3600 **RNA 2055** 68.8 68.8 74.8 0.85 69.0 157 3600 0.361 85 28 5500 **RNA 3050** 68.8 90 38 75.9 0.85 113 255 5500 3600 0.705 **RNA 1060** 72.6 90 20 78.6 0.85 37.0 85.0 5200 3400 0.283 72.6 72.0 **RNA 2060** 72.6 90 28 78.6 0.85 165 5200 3400 0.413 **RNA 3055** 72.6 95 38 79.6 0.85 117 268 5200 3400 0.782 **RNA 1065** 78.3 95 20 84.3 0.85 41.5 97.0 4900 3200 0.306 78.3 **RNA 2065** 78.3 95 28 84.3 0.85 78.0 184 4900 3200 0.433 **RNA 3060** 78.3 100 38 85.3 0.85 123.0 290 4900 3200 0.810 100 4500 **RNA 1070** 83.1 20 89.1 0.85 43.0 103 2900 0.322 83.1 **RNA 2070** 83.1 100 28 89.1 0.85 81.0 195 4500 2900 0.470 **RNA 3065** 83.1 105 38 90.2 0.85 129 308 4500 2900 0.865 **RNA 1075** 88 110 24 95.0 0.85 64.0 155 4300 2800 0.577 88 110 32 104 253 **RNA 2075** 88 95.0 0.85 4300 2800 0.767 **RNA 3070** 88 110 38 95.0 0.85 134 325 4300 2800 0.906 **RNA 1080** 96 115 24 103.0 68.0 170 4000 2600 0.510 0.85 **RNA 2080** 115 110 96 96 32 103.0 0.85 275 4000 2600 0.694 142 4000 2600 **RNA 3075** 120 103.0 355 1.098 96 38 0.85 **RNA 2085** 99.5 120 32 106.5 1.35 113 285 3800 2500 0.787 99.5 **RNA 3080** 99.5 125 38 106.5 0.85 145 365 3800 2500 1.220 111.7 117 **RNA 2090** 104.7 125 32 1.35 300 3600 2300 0.837 104.7 **RNA 3085** 104.7 130 38 111.7 1.35 150 390 3600 1.252 2300 109.1 130 32 116.1 1.35 120 315 3500 2300 0.882 **RNA 2095** 109.1 **RNA 3090** 109.1 135 43 116.1 1.35 185 480 3500 2300 1.522

ohne Innenring

Serie RNA 1000, RNA 2000, RNA 22000, RNA 3000

RNA serie 3000

RNA serie	1000
2000, 220	000

Welle	Bezeichnung	F _w	D mm	C mm	E _w	r _{s min.}	Tragzahlen kN		Grenzdrehzahlen min ⁻¹		Gewicht kg
							dynamisch statisch				
mm							С	C ₀	ÖI	Fett	
114.7	RNA 2100	114.7	135	32	121.7	1.35	125	330	3300	2100	0.677
	RNA 3095	114.7	140	43	121.7	1.35	190	505	3300	2100	1.551
119.2	RNA 2105	119.2	140	32	126.2	1.35	129	340	3200	2100	0.941
	RNA 3100	119.2	145	43	126.2	1.35	195	520	3200	2100	1.645
124.5	RNA 2110	124.5	145	34	131.5	1.35	133	360	3000	2000	1.015
	RNA 3105	124.5	150	45	131.5	1.35	203	550	3000	2000	1.762
132.5	RNA 2115	132.5	155	34	139.5	1.35	139	380	2900	1900	1.205
	RNA 3110	132.5	160	45	139.5	1.35	210	580	2900	1900	2.037
407	RNA 2120	137	160	34	144.0	1.35	142	395	2800	1800	1.265
137	RNA 3115	137	165	45	144.0	1.35	215	600	2800	1800	2.140
143.5	RNA 2125	143.5	165	34	150.5	1.35	145	410	2700	1800	1.218
143.5	RNA 3120	143.5	170	45	150.5	1.35	224	630	2700	1800	2.107
148	RNA 2130	148	170	34	155.0	1.35	150	425	2600	1700	1.292
150	RNA 2140	158	180	36	165.0	1.35	157	455	2400	1600	1.478
158	RNA 3130	158	190	52	166.0	1.35	275	790	2400	1600	3.285
170.5	RNA 2150	170.5	195	36	177.5	1.35	165	490	2200	1400	1.790
	RNA 3140	170.5	205	52	178.5	1.35	290	860	2200	1400	3.840
179.3	RNA 2160	179.3	205	36	186.3	1.35	170	515	2100	1400	1.970
	RNA 3150	179.3	215	52	187.3	1.35	300	900	2100	1400	4.185
193.8	RNA 2170	193.8	220	42	200.8	1.85	233	720	2000	1300	2.570
	RNA 3160	193.8	230	57	201.9	1.35	360	1110	2000	1300	4.955
202.6	RNA 2180	202.6	230	42	209.6	1.85	240	750	1900	1200	2.835
040	RNA 2190	216	245	42	223.0	1.85	250	800	1800	1200	3.210
216	RNA 3180	216	255	57	224.1	1.85	385	1240	1800	1200	6.040
224.1	RNA 2200	224.1	255	42	231.1	1.85	257	830	1700	1100	3.560
236	RNA 2210	236	265	42	243.1	1.85	279	910	1600	1000	3.470
258.4	RNA 3220	258.4	300	64	268.4	1.85	490	1650	1500	980	8.570
269.6	RNA 2240	269.6	300	49	276.6	1.85	345	1190	1400	910	4.985
281.9	RNA 3240	281.9	325	64	291.9	1.85	520	1800	1300	850	9.480
335	RNA 2300	335	375	54	343.0	1.85	460	1690	1100	720	8.600

