

Längsführungen THK Hauptkatalog

A Produktinformation

Merkmale und Typen Merkmale von Längsführungen • Aufbau und Merkmale Typenübersicht • Ausführungen und Merkmale	A7-2 A7-2 A7-2 A7-3 A7-3
Auswahlkriterien Tragzahlen und Lebensdauer Genauigkeitsklassen	A7-4 A7-4 A7-7
Maßzeichnungen und Maßtabellen Längsführung Typ VR (VR1) Längsführung Typ VR (VR2) Längsführung Typ VR (VR3) Längsführung Typ VR (VR4) Längsführung Typ VR (VR6) Längsführung Typ VR (VR9) Längsführung Typ VR (VR12) Längsführung Typ VR (VR15) Längsführung Typ VR (VR18) Kugelkäfig B	A7-8 A7-10 A7-12 A7-14 A7-16 A7-18 A7-20 A7-22 A7-24 A7-26
Konstruktionshinweise Montage Beispiel für die Spieleinstellung Vorspannung Genauigkeit der Montageoberfläche	A7-28 A7-28 A7-29 A7-29 A7-29
OptionenSpezialmontageschraube	A7-30 A7-30
Bestellbezeichnung Aufbau der Bestellbezeichnung Anmerkungen zur Bestellung	A7-31 A7-31 A7-32
Vorsichtsmaßnahmen	A7-33

B Technische Grundlagen (separat)

Merkmale und Typen	B 7-2
Merkmale von Längsführungen	B 7-2
Aufbau und Merkmale	B 7-2
Typenübersicht	B 7-3
Ausführungen und Merkmale	B 7-3
Auswahlkriterien	B7-4
Tragzahlen und Lebensdauer	B7-4
Montone	B7-7
Montage	
Montage	B7-7
Beispiel für die Spieleinstellung	B7-8
Vorspannung	B 7-8
Genauigkeit der Montageoberfläche	B 7-8
Optionen	B 7-9
Spezialmontageschraube	B 7-9
Speziaimontageschiaube	1 -9
Bestellbezeichnung	B7-10
Aufbau der Bestellbezeichnung	B 7-10
Anmerkungen zur Bestellung	B7-11
- Allinerkungen zur bestellung	4 / -
Vorsichtsmaßnahmen	B 7-12

Merkmale von Längsführungen

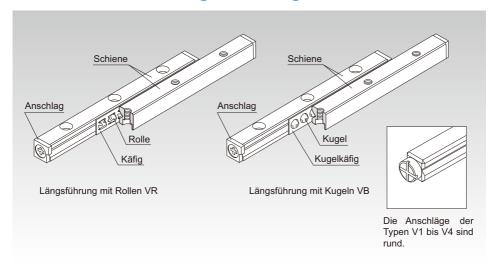


Abb. 1 Aufbau der Längsführungen VB/VR

Aufbau und Merkmale

Im Typ VR sind Präzisionsrollen in einem Rollenkäfig im rechten Winkel versetzt zueinander angeordnet. Der Rollenkäfig ist mit einer Schiene mit V-förmiger Laufrille kombiniert. Werden zwei Kreuzrollenführungen parallel montiert, kann das Führungssystem Belastungen in allen vier Richtungen aufnehmen. Dank der Möglichkeit, die Kreuzrollenführung vorzuspannen, kann eine spielfreie, hochsteife und leichtgängige Bewegung erzielt werden.

Der Typ VB ist ein reibungsarmes, hochpräzises Linearsystem mit Hubbegrenzung. Er stellt eine Kombination des Kugelkäfigs Typ B mit eng nebeneinander liegenden Präzisionsstahlkugeln mit einer Schiene Typ V dar.

Längsführungen kommen in verschiedenen Geräten zum Einsatz, wie z.B. in Computern und zugehörigen Peripheriegeräten, Messgeräten, Präzisionsgeräten einschließlich Leiterplatten-Bohrmaschinen, optischen Messgeräten, optischen Positioniersystemen, Handhabungsgeräten und Röntgengeräten.

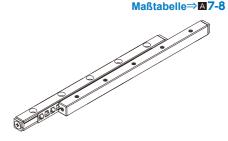
[Lange Lebensdauer, hohe Steifigkeit]

Dank des einzigartigen Haltesystems für die Rollen wird ein etwa um das 1,7-fache größerer Kontaktbereich als bei herkömmlichen Lagern erzielt. Da der Rollenabstand gering ist und entsprechend viele Rollen verwendet werden, ergibt sich im Vergleich mit konventionellen Systemen eine Verdopplung der Steifigkeit und eine sechsfache Verlängerung der Lebensdauer. Dadurch können sicher Längsführungen hergestellt werden, die Vibration und Stoßbelastungen aufnehmen können.

[Leichtgängiger Lauf]

Beim Typ VR sind die Rollen durch einen Rollenkäfig voneinander getrennt. Durch den engen Kontakt zwischen Rollen und Käfig wird der Schmierstoffaustritt reduziert. Dies sorgt für einen leichtgängigen, verschleiß- und reibungsarmen Lauf.

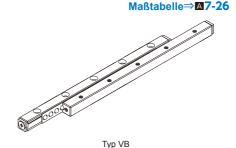
[Ausgezeichnete Korrosionsbeständigkeit]


Die Baureihen VR und VB können aus rostbeständigem Stahl geliefert werden.

Typenübersicht

Ausführungen und Merkmale

Längsführung mit Rollen VR


Ein kompaktes, hochsteifes Linearsystem, dessen Rollenkäfig orthogonal hintereinander angeordnete Präzisionsrollen enthält. Diese laufen über die halbe Hublänge an einer Schiene mit V-Nut ab.

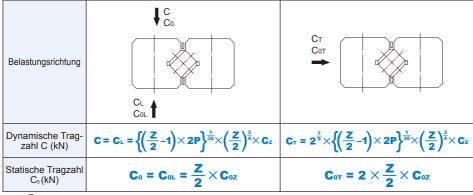
Typ VR

Längsführung mit Kugeln VB

Ein reibungsarmes, hochpräzises Linearsystem, dessen Kugelkäfig in geringen Abständen Präzisionskugeln enthält. Diese laufen über die halbe Hublänge an einer Schiene mit V-Nut ab.

Tragzahlen und Lebensdauer

[Tragzahlen in allen Richtungen]


Die Tragzahlen (Cz und Coz) in den Tabellen beziehen sich auf einen Wälzkörper für Belastungen gemäß der dargestellten Richtungen. Bei der Ermittlung der nominellen Lebensdauer sind die Tragzahlen (C und Co) der tatsächlich eingesetzten Wälzkörper anhand der nachstehenden Gleichung zu berechnen.

 C_z : Dynamische Tragzahl je Wälzkörper gemäß der Maßtabelle (kN) C_{oz} : Statische Tragzahl je Wälzkörper gemäß der Maßtabelle (kN)

Z : Anzahl der verwendeten Wälzkörper (Anzahl von Wälzkörpern im effektiven Tragbereich)

P : Rollenteilung (siehe Seite A7-8 bis A7-25)

Für Typ VR

^{*}wird $\frac{Z}{2}$ ganzzahlig abgerundet.

Für Typ VB

Belastungsrichtung	CL Co.	Ст
Dynamische Tragzahl C (kN)	$C = C_L = Z^{\frac{2}{3}} \times C_Z$	$C_T = 2 \times Z^{\frac{2}{3}} \times C_Z$
Statische Tragzahl C ₀ (kN)	$\mathbf{C}_0 = \mathbf{C}_{0L} = \mathbf{Z} \times \mathbf{C}_{0Z}$	$\mathbf{C}_{\text{oT}} = 2 \times \mathbf{Z} \times \mathbf{C}_{\text{oz}}$

[Statischer Sicherheitsfaktor fs]

Die Typen VR und VB können während des Betriebs oder im Stillstand Schwingungen und Stößen ausgesetzt sein, und es können Trägheitsmomente durch Anfahren und Abbremsen auftreten. Bei diesen Belastungen ist der statische Sicherheitsfaktor zu berücksichtigen.

 $f_s = \frac{C_0}{P_c}$

fs : Statischer Sicherheitsfaktor (siehe Tab. 1)

Co : Statische Tragzahl (kN)

Pc : Berechnete Belastung (kN)

Tab. 1	Statischen	Sicherheitsfaktor	(fs)
--------	------------	-------------------	-----	---

Maschinen mit Linearsystem	Betriebsbedingungen	Unterer Grenz- wert für fs
Industriemaschinen	Ohne Schwingungen oder Stöße	1 bis 1,3
im Allgemeinen	Mit Schwingungen oder Stößen	2 bis 3

[Nominelle Lebensdauer]

Nach der Ermittlung der dynamischen Tragzahl kann die Lebensdauer der Typen VR und VB nach den folgenden Gleichungen berechnet werden.

• Für Typ VR

$$L = \left(\frac{f_T}{f_W} \cdot \frac{C}{P_c}\right)^{\frac{10}{3}} \times 100$$

• Für Typ VB

$$L = \left(\frac{f_T}{f_W} \cdot \frac{C}{P_c}\right)^3 \times 50$$

Nominelle Lebensdauer (km)
 (Gesamtlaufstrecke, die 90% einer Gruppe baugleicher, unabhängig voneinander arbeitender VR- bzw. VB-Einheiten unter gleichen Betriebsbedingungen ohne Anzeichen von Ermüdung erreichen kann)

 $\begin{array}{lll} C & : Dynamische Tragzahl & (kN) \\ P_c & : Berechnete Belastung & (kN) \\ f_T & : Temperaturfaktor (siehe Abb. 1 auf Seite <math>\blacksquare 7-6$) $f_W & : Belastungsfaktor (siehe Tab. 2 auf <math>\blacksquare 7-6$)

[Zeitbezogene Lebensdauerberechnung]

Nach dem Berechnen der nominellen Lebensdauer (L) kann bei konstanter Hublänge und Zyklenzahl je Minute mit Hilfe der nachfolgenden Gleichung die Lebensdauer in Stunden berechnet werden.

$$L_h = \frac{L \times 10^6}{2 \times \ell_s \times n_1 \times 60}$$

 $\begin{array}{lll} L_h & : Lebensdauer & (h) \\ \ell_S & : Hublänge & (mm) \\ n_1 & : Zyklenzahl pro Minute & (min^{-1}) \end{array}$

● f_T: Temperaturfaktor

Überschreitet die Umgebungstemperatur während des Betriebs der Typen VR bzw. VB 100°C, sind die negativen Auswirkungen hoher Temperaturen zu berücksichtigen und die Tragzahlen mit dem Temperaturfaktor aus Abb. 1 zu multiplizieren.

Hinweis: Liegt die Umgebungstemperatur über 100°C, wenden Sie sich bitte an THK.

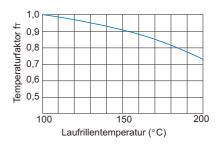
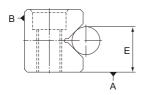
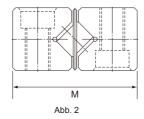


Abb. 1 Temperaturfaktor (f₁)

fw: Belastungsfaktor


Im Allgemeinen verursachen Maschinen mit oszillierenden Bewegungen beim Betrieb Schwingungen oder Stöße. Generell können im Hochgeschwindigkeitsbetrieb bei wiederholtem Anfahren und Anhalten erzeugte Schwingungen und Stoßbelastungen nur schwer genau bestimmt werden. Sind die tatsächlichen Belastungen der Typen VR und VB nicht messbar oder haben Geschwindigkeit und Stoßbelastungen starken Einfluss, ist die Tragzahl (C bzw. C₀) durch den entsprechenden Belastungsfaktor aus Tab. 2 zu dividieren. Die Tabelle enthält empirisch ermittelte Daten.


Tab. 2 Belastungsfaktor (fw)

Schwingungen/ Stöße	Geschwindigkeit (V)	f _w
sehr geringe	sehr langsam V ≦ 0,25 m/s	1 bis 1,2
gering	langsam 0,25 < V ≦ 1 m/s	1,2 bis 1,5

Genauigkeitsklassen

Die Schienen der Längsführungen werden eingeteilt in Hochgenauigkeitsklasse (H) und Präzisionsklasse (P) (siehe Tab. 3).

Tab. 3 Genauigkeitsklassen für die Schiene Typ V Einheit: mm

Genauigkeitsklassen	Hochgenaue Klasse	Präzisions klasse			
Symbol	н	Р			
Messung	П				
Parallelität der Lauf- bahn zu den Bezugs- flächen A und B	Gemäß Abb. 3				
Toleranz der Abmes- sungen für Höhe E	±0,02	±0,01			
Abweichung der Höhe E (Hinweis)	0,01	0,005			
Toleranz der Abmes- sungen für Breite M	0 -0,2	0 -0,1			

Hinweis: Die Abweichung der Höhe E gilt für vier Schienen auf derselben Ebene.

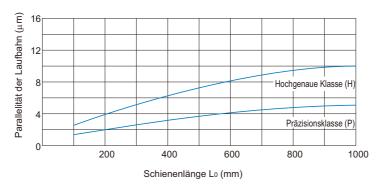
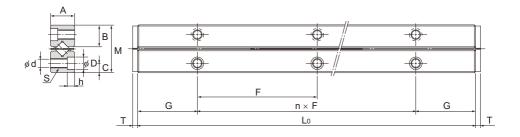



Abb. 3 Schienenlänge und Parallelität der Laufbahn

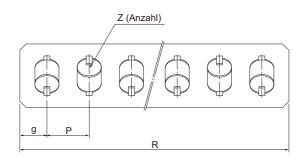
Längsführung Typ VR (VR1)

			Haupt-									
Тур	Maximaler Hub	Kombinierte Abmessungen			Montage-							
		М	А	Lo	n×F	G	В	С	S	d		
VR 1-20×5Z	12			20	1×10							
VR 1-30×7Z	22			30	2×10							
VR 1-40×10Z	27			40	3×10							
VR 1-50×13Z	32	8,5	4	50	4×10	5	3,9	1,8	M2	1,65		
VR 1-60×16Z	37			60	5×10							
VR 1-70×19Z	42			70	6×10							
VR 1-80×21Z	52			80	7×10							

Aufbau der Bestellbezeichnung

VR1 -30 H × 8Z

Anzahl Rollen oder Kugeln


Genauigkeitsklasse

Schienenlänge (mm)

(Beispiel bei unterschiedlichen Schienenlängen: 40/50)

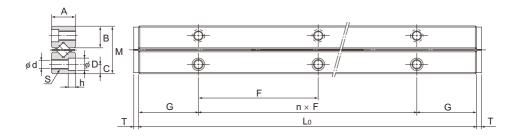
Baureihe/-größe (für Längsführung mit Kugeln: VB)

				Abı		Zulässige Vorspannung	Tragzahl	(je Rolle)	Masse (Schiene)			
Abmessungen						Anzahl Rollen	δ	Cz	C _{0Z}			
	D	h	Т	Da	R	g	Р	Z	μm	kN	kN	kg/m
					14			5				
					19			7				
					26,5			10				
	3	1,4	1,6	1,5	34	2	2,5	13	-2	0,152	0,153	0,11
					41,5			16				
					49			19				
					54			21				

Hinweis: Soll eine Längsführung mit einem Kugelkäfig verwendet werden, siehe **A7-26** für Kugelkäfig B. Bitte geben Sie die erforderliche Anzahl der Kugeln an.

(Beispiel) VB1-50H x 12Z

—Anzahl Kugeln


Die in der Tabelle angegebene Masse entspricht dem Wert je Schiene/m. Kann auch aus korrosionsbeständigem Stahl geliefert werden. (Symbol M, z. B. VR1M). Zur Befestigung der Schiene des Typs VR1 sind Kreuzschlitzschrauben für Präzisionsgeräte zu verwenden (No. 0).

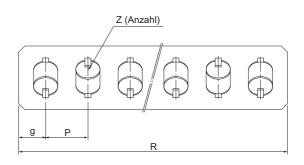
Тур	Schraube	Schraubengröße
Für Typ VR1	Kreuzschlitzschraube No. 0 (Klasse 3)	M1,4 × 0,3

Standard der Japan Camera Industry Association nach JCIS 10-70 Kreuzschlitzschraube für Präzisionsgeräte (Schraube No. 0)

Längsführung Typ VR (VR2)

		Haupt-									
Тур	Maximaler Hub	Kombinie	erte Abme	essungen	Montage-						
		М	Α	Lo	n×F	G	В	С	S	d	
VR 2- 30×5Z	18			30	1×15						
VR 2- 45×8Z	24			45	2×15						
VR 2- 60×11Z	30			60	3×15						
VR 2- 75×13Z	44			75	4×15						
VR 2- 90×16Z	50			90	5×15						
VR 2-105×18Z	64	12	6	105	6×15	7,5	5,6	2,5	M3	2,55	
VR 2-120×21Z	70			120	7×15						
VR 2-135×23Z	84			135	8×15						
VR 2-150×26Z	90			150	9×15						
VR 2-165×29Z	96			165	10×15						
VR 2-180×32Z	102			180	11×15						

Aufbau der Bestellbezeichnung



Anzahl Rollen oder Kugeln Genauigkeitsklasse

Schienenlänge (mm) (Beispiel bei unterschiedlichen Schienenlängen: 90/105)

Baureihe/-größe (für Längsführung mit Kugeln: VB)

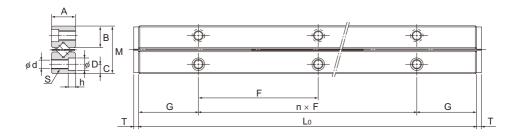
Abmessungen								Zulässige Vorspannung	Tragzahl	(je Rolle)	Masse (Schiene)	
	Abmessungen							Anzahl Rollen	δ	Cz	C _{0Z}	
	D	h	Т	Da	R	g	Р	Z	μm	kN	kN	kg/m
					21			5				
					33			8				
					45			11				
					53			13				
					65			16				
	4,4	2	1,5	2	73	2,5	4	18	-3	0,276	0,271	0,23
					85			21				
					93			23				
					105			26				
					117			29				
					129			32				

Hinweis: Soll eine Linearführung in Kombination mit einem Kugelkäfig verwendet werden, siehe **M7-26** auf Seite Kugelkäfig B. Bitte geben Sie die erforderliche Anzahl Kugeln an.

(Beispiel) VB2-90H x 15Z

-Anzahl Kugeln

Die in der Tabelle angegebene Masse entspricht dem Wert je Schiene/m. Kann auch aus korrosionsbeständigem Stahl geliefert werden. (Symbol M, z. B. VR2M). Zur Befestigung der Schiene des Typs VR2 sind Kreuzschlitzschrauben für Präzisionsgeräte zu verwenden (Schraube


Nr. 0).

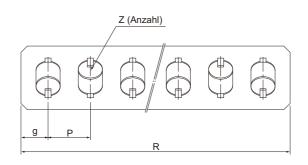
Тур	Schraube	Schraubengröße
Für Typ VR2	Zylinderkopfschraube	M2 × 0,4

Kreuzschlitzschraube JIS B 1111 (Flachkopfschraube)

Längsführung Typ VR (VR3)

Typ						Haupt-					
Тур	Maximaler Hub	Kombinie	erte Abme	essungen			Monta	ige-			
		М	Α	Lo	n×F	G	В	С	S	d	
VR 3- 50×7Z	28			50	1×25						
VR 3- 75×10Z	48			75	2×25						
VR 3-100×14Z	58			100	3×25						
VR 3-125×17Z	78			125	4×25						
VR 3-150×21Z	88			150	5×25						
VR 3-175×24Z	108	18	8	175	6×25	12,5	8,3	3,5	M4	3,3	
VR 3-200×28Z	118			200	7×25	1					
VR 3-225×31Z	138			225	8×25						
VR 3-250×35Z	148			250	9×25						
VR 3-275×38Z	168			275	10×25						
VR 3-300×42Z	178			300	11×25						

Aufbau der Bestellbezeichnung

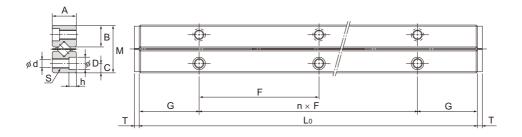


Anzahl Rollen oder Kugeln Genauigkeitsklasse

Schienenlänge (mm) (Beispiel bei unterschiedlichen Schienenlängen: 100/125)

Baureihe/-größe (für Längsführung mit Kugeln: VB)

			Ab	messur	ngen			Zulässige Vorspannung	Tragzahl	(je Rolle)	Masse (Schiene)
Abn	nessun	gen					Anzahl Rollen	δ	Cz	Coz	
D	h	Т	Da	R	g	Р	Z	μm	kN	kN	kg/m
				36			7				
				51			10				
				71			14				
				86			17				
				106			21				
6	3,1	2	3	121	3	5	24	-4	0,639	0,611	0,45
				141			28				
				156			31				
				176			35				
				191			38				
				211			42				


Hinweis: Soll eine Linearführung in Kombination mit einem Kugelkäfig verwendet werden, siehe M7-26 auf Seite Kugelkäfig B. Bitte geben Sie die erforderliche Anzahl Kugeln an.

(Beispiel) VB3-150H x 20Z

Anzahl Kugeln

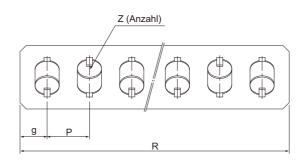
Die in der Tabelle angegebene Masse entspricht dem Wert je Schiene/m. Kann auch aus korrosionsbeständigem Stahl geliefert werden. (Symbol M, z. B. VR3M).

Längsführung Typ VR (VR4)

	Mavimalar					Haupt-				
Тур	Maximaler Hub	Kombini	erte Abme	essungen			Monta	ige-		
		М	Α	Lo	n×F	G	В	С	S	d
VR 4- 80×7Z	58			80	1×40					
VR 4-120×11Z	82			120	2×40					
VR 4-160×15Z	106			160	3×40					
VR 4-200×19Z	130			200	4×40					
VR 4-240×23Z	154			240	5×40					
VR 4-280×27Z	178	22	11	280	6×40	20	10,2	4,5	M5	4,3
VR 4-320×31Z	202			320	7×40					
VR 4-360×35Z	226			360	8×40					
VR 4-400×39Z	250			400	9×40					
VR 4-440×43Z	274			440	10×40					
VR 4-480×47Z	298			480	11×40					

Aufbau der Bestellbezeichnung

 $VR4 - 80 P \times 9Z$

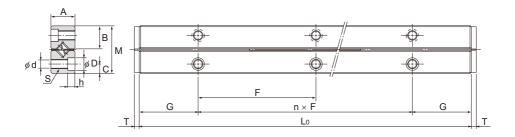

Anzahl Rollen oder Kugeln Genauigkeitsklasse

Schienenlänge (mm)

(Beispiel bei unterschiedlichen Schienenlängen: 120/160)

Baureihe/-größe (für Längsführung mit Kugeln: VB)

			Ab	messur	ngen			Zulässige Vorspannung	Tragzahl	(je Rolle)	Masse (Schiene)
Abn	nessun	gen					Anzahl Rollen	δ	Cz	Coz	
D	h	Т	Da	R	g	Р	Z	μm	kN	kN	kg/m
				51			7				
				79			11				
				107			15				
				135			19				
				163			23				
8	4,2	2	4	191	4,5	7	27	-5	1,38	1,35	0,8
				219			31				
				247			35				
				275			39				
				303			43				
				331			47				


Hinweis: Soll eine Linearführung in Kombination mit einem Kugelkäfig verwendet werden, siehe **A7-26** auf Seite Kugelkäfig B. Bitte geben Sie die erforderliche Anzahl Kugeln an.

(Beispiel) VB4-200H x 17Z

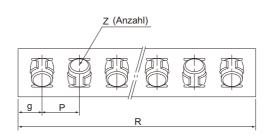
— Anzahl Kugeln

Die in der Tabelle angegebene Masse entspricht dem Wert je Schiene/m. Kann auch aus korrosionsbeständigem Stahl geliefert werden. (Symbol M, z. B. VR4M).

Längsführung Typ VR (VR6)

						Haupt-					
Тур	Maximaler Hub	Kombini	erte Abme	essungen			Monta	ige-			
		М	А	Lo	n×F	G	В	С	S	d	
VR 6-100×7Z	56			100	1×50						
VR 6-150×10Z	96			150	2×50						
VR 6-200×13Z	136			200	3×50						
VR 6-250×17Z	156			250	4×50						
VR 6-300×20Z	196			300	5×50						
VR 6-350×24Z	216	30	15	350	6×50	25	14,4	6	M6	5,2	
VR 6-400×27Z	256			400	7×50						
VR 6-450×31Z	276			450	8×50						
VR 6-500×34Z	316			500	9×50						
VR 6-550×38Z	336			550	10×50						
VR 6-600×41Z	376			600	11×50						

Aufbau der Bestellbezeichnung

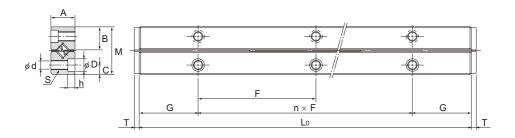

 $VR6 - 100 P \times 6Z$

Anzahl Rollen oder Kugeln Genauigkeitsklasse

Schienenlänge (mm) (Beispiel bei unterschiedlichen Schienenlängen: 300/400)

Baureihe/-größe (für Längsführung mit Kugeln: VB)

			Ab	messur	ngen			Zulässige Vorspannung	Tragzahl	(je Rolle)	Masse (Schiene)
Abn	nessun	gen					Anzahl Rollen	δ	Cz	Coz	
D	h	Т	D₃	R	g	Р	Z	μ m	kN	kN	kg/m
				72			7				
				102			10				
				132			13				
				172			17				
				202			20				
9,5	5,2	3,2	6	242	6	10	24	-7	3,78	3,78	1,5
				272			27				
				312			31				
				342			34				
				382			38				
				412			41				


Hinweis: Soll eine Linearführung in Kombination mit einem Kugelkäfig verwendet werden, siehe **M7-26** auf Seite Kugelkäfig B. Bitte geben Sie die erforderliche Anzahl Kugeln an.

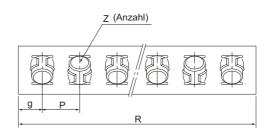
(Beispiel) VB6-300H x18Z Anzahl Kugeln

Die in der Tabelle angegebene Masse entspricht dem Wert je Schiene/m. Kann auch aus korrosionsbeständigem Stahl geliefert werden. (Symbol M, z. B. VR6M).

Längsführung Typ VR (VR9)

						Haupt-							
Тур	Maximaler Hub	Kombinie	erte Abme	essungen			Monta	ige-					
		М	Α	Lo	n×F	G	В	С	S	d			
VR 9- 200×10Z	118			200	1×100								
VR 9- 300×15Z	178			300	2×100								
VR 9- 400×20Z	238			400	3×100								
VR 9- 500×25Z	298		20	500	4×100			8					
VR 9- 600×30Z	358			600	5×100	50	19,2						
VR 9- 700×35Z	418	40 (40,74)		700	6×100				M8	6,8			
VR 9- 800×40Z	478			800	7×100								
VR 9- 900×45Z	538			900	8×100								
VR 9-1000×50Z	598					1000	9×100						
VR 9-1100×55Z	658			1100	10×100)							
VR 9-1200×60Z	718			1200	11×100								

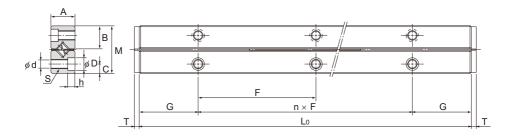
Aufbau der Bestellbezeichnung


VR9 -600

Anzahl Rollen oder Kugeln Genauigkeitsklasse

Schienenlänge (mm) (Beispiel bei unterschiedlichen Schienenlängen: 300/400)

Baureihe/-größe (für Längsführung mit Kugeln: VB)


Einheit: mm

			Abm	nessunç	gen		Zulässige Vorspannung	Tragzahl	(je Rolle)	Masse (Schiene)	
Abn	nessun	gen					Anzahl Rollen	δ	Cz	Coz	
D	h	Т	D₃	R	g	Р	Z	μm	kN	kN	kg/m
				141			10				
				211			15				
				281			20				
				351			25				
				421			30				
10,5	6,2	4	9 (9,525)	491	7,5	14	35	-10	9,53	9,48	3,2
			, ,	561			40				
				631			45				
				701			50				
				771			55				
				841			60				

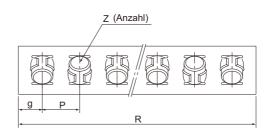
Hinweis: Die oben in Klammern angegebenen Werte bezeichnen die Abmessungen der Linearführung.
Soll eine Linearführung in Kombination mit einem Kugelkäfig verwendet werden, siehe **A7-26** auf Seite Kugelkäfig B. Bitte geben Sie die erforderliche Anzahl Kugeln an.

Die in der Tabelle angegebene Masse entspricht dem Wert je Schiene/m. Kann auch aus korrosionsbeständigem Stahl geliefert werden. (Symbol M, z. B. VR9M).

Längsführung Typ VR (VR12)

						Haupt-					
Тур	Maximaler Hub	Kombinie	erte Abme	essungen			Monta	ige-			
		М	А	Lo	n×F	G	В	С	S	d	
VR12-200×7Z	110			200	1×100						
VR12-300×10Z	190			300	2×100						
VR12-400×14Z	230			400	3×100						
VR12- 500×17Z	310			500	4×100						
VR12-600×21Z	350			600	5×100						
VR12-700×24Z	430	58 (57,86)	28	700	6×100	50	28	12	M10	8,5	
VR12-800×28Z	470			800	7×100						
VR12-900×31Z	550			900	8×100						
VR12-1000×34Z	630			1000	9×100						
VR12-1100×38Z	670			1100	10×100						
VR12-1200×41Z	750			1200	11×100						

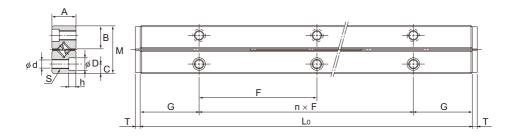
Aufbau der Bestellbezeichnung


VR12 -200 P \times 9Z

Anzahl Rollen oder Kugeln Genauigkeitsklasse

Schienenlänge (mm) (Beispiel bei unterschiedlichen Schienenlängen: 300/400)

Baureihe/-größe (für Längsführung mit Kugeln: VB)


			Ab	messur	ngen			Zulässige Vorspannung	Tragzahl	(je Rolle)	Masse (Schiene)
Abr	nessun	gen					Anzahl Rollen	δ	Cz	Coz	
D	h	Т	Da	R	g	Р	Z	μm	kN	kN	kg/m
				145			7				
				205			10				
				285			14				
				345			17				
				425			21				
14	8,2	5	12 (11,906)	485	12,5	20	24	-13	17,6	17,2	5,3
				565			28				
				625			31				
				685			34				
				765			38				
				825			41				

Hinweis: Die oben in Klammern angegebenen Werte bezeichnen die Abmessungen der Linearführung.
Soll eine Linearführung in Kombination mit einem Kugelkäfig verwendet werden, siehe **A7-26** auf Seite Kugelkäfig B. Bitte geben Sie die erforderliche Anzahl Kugeln an.

(Beispiel) VB12-700H x 20Z Anzahl Kugeln

Die in der Tabelle angegebene Masse entspricht dem Wert je Schiene/m. Kann auch aus korrosionsbeständigem Stahl geliefert werden. (Symbol M, z. B. VR12M).

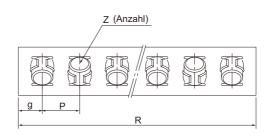
Längsführung Typ VR (VR15)

						Haupt-				
Тур	Maximaler Hub	Kombinie	erte Abme	essungen			Monta	ıge-		
		M	А	Lo	n×F	G	В	С	S	d
VR15- 300× 8Z	190			300	2×100					
VR15-400×11Z	240			400	3×100					
VR15-500×13Z	340		36	500	4×100		34,4			
VR15-600×16Z	390			600	5×100					
VR15-700×19Z	440	71		700	6×100	50		14	M12	10,5
VR15-800×22Z	490	(71,11)	30	800	7×100				IVITZ	10,5
VR15-900×25Z	540			900	8×100					
VR15-1000×27Z	640			1000	9×100					
VR15-1100×30Z	690			1100	10×100					
VR15-1200×33Z	740			1200	11×100					

Aufbau der Bestellbezeichnung

 $VR15 - 300 H \times 10Z$

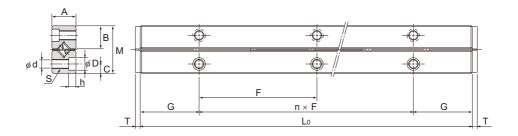
Anzahl Rollen oder Kugeln


Genauigkeitsklasse

Schienenlänge (mm)

(Beispiel bei unterschiedlichen Schienenlängen: 300/400)

Baureihe/-größe (für Längsführung mit Kugeln: VB)


Abmessungen									Zulässige Vorspannung	Tragzahl	(je Rolle)	Masse (Schiene)			
	Abmessungen							Anzahl R			Anzahl Rollen	δ	Cz	Coz	
	D	h	Т	Da	R	g	Р	Z	μm	kN	kN	kg/m			
					205			8							
					280			11							
					330			13							
					405			16							
	17,5	,5 10,2 6	15	480	15	25	19	16	27.0	26.0	8,3				
	17,5			(15,081)	555	25	22	-10	-16 27,9 26,8	0,3					
					630			25							
					680			27							
					755			30							
					830			33							

Hinweis: Die oben in Klammern angegebenen Werte bezeichnen die Abmessungen der Linearführung.
Soll eine Linearführung in Kombination mit einem Kugelkäfig verwendet werden, siehe **A7-26** auf Seite Kugelkäfig B. Bitte geben Sie die erforderliche Anzahl Kugeln an.

(Beispiel) VB15-800H x 20Z ____Anzahl Kugeln

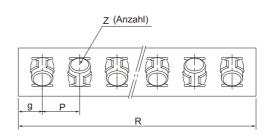
Die in der Tabelle angegebene Masse entspricht dem Wert je Schiene/m. Kann auch aus korrosionsbeständigem Stahl geliefert werden. (Symbol M, z. B. VR15M).

Längsführung Typ VR (VR18)

		Haupt-									
Тур	Maximaler Hub	Kombini	erte Abme	essungen	Montage-						
		М	А	Lo	n×F	G	В	С	S	d	
VR18-300×6Z	228			300	2×100						
VR18- 400× 9Z	248			400	3×100						
VR18-500×11Z	328	83		500	4×100	50	40,2	18	M14		
VR18-600×13Z	408			600	5×100						
VR18-700×16Z	428		40	700	6×100					12,5	
VR18-800×18Z	508	03	40	800	7×100					12,5	
VR18-900×20Z	588			900	8×100						
VR18-1000×23Z	608			1000	9×100						
VR18-1100×25Z	688			1100	10×100						
VR18-1200×27Z	768			1200	11×100						

Aufbau der Bestellbezeichnung

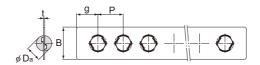
VR18 -400 H × 10Z


Anzahl Rollen oder Kugeln

Genauigkeitsklasse

Schienenlänge (mm) (Beispiel bei unterschiedlichen Schienenlängen: 300/400)

Baureihe/-größe (für Längsführung mit Kugeln: VB)



Abmessungen									Zulässige Vorspannung	Tragzahl	(je Rolle)	Masse (Schiene)
	Abr	nessun	gen					Anzahl Rollen	δ	Cz	C _z C _{oz}	
	D	h	Т	Da	R	g	Р	Z	μm	kN	kN	kg/m
					186			6				
					276			9				
					336			11				
			396			13						
	20	10.0	6	18	486	10	20	16	10	40.0	20.0	10 F
	20 12,2 6 18	10	546	546 18	10	30	18	-18	40,9	38,8	10,5	
					606			20				
					696			23				
					756			25				
					816			27				

Hinweis: Die in der Tabelle angegebene Masse entspricht dem Wert je Schiene/m. Kann auch aus korrosionsbeständigem Stahl geliefert werden. (Symbol M, z. B. VR18M).

Kugelkäfig B

Einheit: mm

		Наир	otabmessu	ngen	Trag (je K	Geeignete		
Тур	Da	t	В	Р	g	Cz N	C _{0Z}	Schiene
B 1	1,5	0,2	3,5	2,5	2	7,84	21,6	V1
B 2	2	0,3	5	4	3	12,7	39,2	V2
В 3	3	0,4	7	6	4,5	27,5	87,3	V3
B 4	4	0,5	9	7	4,5	45,1	155	V4
B 6	6	0,6	13,5	10	6	98	353	V6
B 9	9,525	1	19	14	8,5	216	784	V9
B 12	11,906	1	25	20	12,5	324	1420	V12
B 15	15,081	1,2	31	25	15	490	2160	V15

Montage

Wenn das Spiel mittels Schrauben eingestellt wird:

- (1) Die Schienen 2 und 3 am Sockel und die Schiene 1 an der Montagefläche des Tisches befestigen. Anschließend die Befestigungsschrauben festziehen.
- (2) Die Schiene 4 locker am Tisch montieren. Hinweis: Die Schienenbefestigungsschrauben müssen so ausgeführt sein, dass sie bei installierter Schiene festgeschraubt werden k\u00f6nnen.
- (3) Ordnen Sie den Sockel und die Tische wie in Abb. 1 dargestellt an und führen Sie anschließend den Rollenkäfig vom Ende her ein. Ist ein Einschieben nicht möglich, weil das Spiel zu gering ist, verschieben Sie zunächst Schiene 4 in Richtung der Stellschrauben und wiederholen anschließend das Einsetzen des Käfigs.
- (4) Setzen Sie eine Messuhr gemäß Abb. 1 an. Ziehen Sie anschließend alle Stellschrauben gleichmäßig an, bis fast kein Spiel mehr vorhanden ist. Drücken Sie dabei den Tisch leicht in seitlicher Richtung.
- (5) Montieren Sie den Anschlag am Schienenende.
- (6) Bewegen Sie den Tisch, und stellen Sie die Käfigposition auf den erforderlichen Hub ein.
- (7) Positionieren Sie den Rollenkäfig wie in Abb. 2-1 dargestellt in der Schienenmitte. Ziehen Sie anschließend die Stellschrauben (b, c und d) in dem Bereich, in dem sich der Käfig befindet, gleichmäßig an, bis die Messuhr die erforderliche Einfederung anzeigt. Ziehen Sie die Befestigungsschrauben nach Abschluss der Einstellung fest an.
 - Hinweis: Der Ausschlag der Messuhr entspricht der Vorspannung je Rollenkäfig.
- (8) Verschieben Sie den Tisch wie in Abb. 2-2 dargestellt und stellen Sie die übrigen Stellschrauben (a und e) in der gleichen Weise ein.

Hinweis: Werden zwei oder mehr Einheiten montiert, ermitteln Sie zunächst das Anzugsdrehmoment der Stellschrauben bzw. den Rollwiderstand für die erste Einheit. Installieren Sie anschließend die zweite (bzw. nachfolgende) Einheit mit dem gleichen Anzugsdrehmoment bzw. Rollwiderstand wie die erste Einheit. So werden fast einheitliche Vorspannungen erreicht.

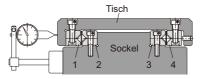
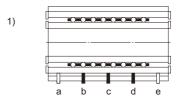



Abb. 1 Installation der Kreuzrollenführung

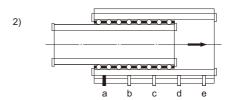
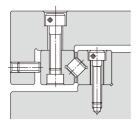
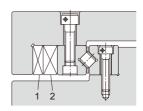




Abb. 2 Nummerierung der Stellschrauben

Beispiel für die Spieleinstellung


Bei der Konstruktion ist darauf zu achten, dass die Stellschrauben mit der Rollenmitte ausgerichtet sind.

Im Normalfall wirkt die Stellschraube auf die Schiene.

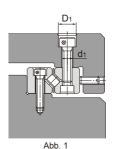
Für höhere Genauigkeit und Steifigkeit wird eine Zwischenplatte verwendet.

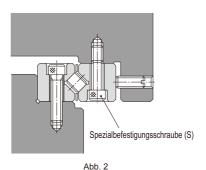
Für extrem hohe Genauigkeit und Steifigkeit werden die Keilleisten 1 und 2 verwendet.

Abb. 3 Beispiel für die Spieleinstellung

Vorspannung

Eine zu starke Vorspannung kann zu Verformungen führen, die die Lebensdauer verkürzen oder Störungen hervorrufen. Die zulässige Vorspannung je Rollenkäfig wird in der entsprechenden Maßtabelle angegeben. Überwachen Sie die Einfederung der Rollenkontaktfläche, während Sie die Stellschrauben anziehen.


Genauigkeit der Montageoberfläche


Für eine hohe Laufgenauigkeit ist eine bestimmte Genauigkeit bezüglich Parallelität und Geradheit notwendig. Vorzugsweise werden Parallelität und Ebenheit der Schienenmontagefläche durch Schleifen oder ähnliche Methoden der Oberflächenbearbeitung hergestellt und müssen mindestens den Parallelitätswerten der Schiene entsprechen (siehe **A7-7**). Außerdem ist die Schiene so zu montieren, dass ein enger Kontakt mit der Montageoberfläche besteht.

Spezialmontageschraube

Zur Montage der Schiene mit normaler Spieleinstellung verwenden Sie die in der Schiene vorhandene Gewindebohrung (siehe Abb. 1). Hierbei ist es erforderlich, die Bohrungsdurchmesser (d_1 und D_1) groß genug auszuführen, so dass die Schienen eingestellt werden können.

Kann die Befestigungsart nach Abb. 2 konstruktionsbedingt nicht vermieden werden, sind Spezialmontageschrauben (S) zu verwenden (siehe Abb. 3).

Tab. 1 Spezialmontageschraube

Einheit: mm

Тур	S	d	D	Н	L	В	Masse [g]	Geeignet für Schiene
S 3	МЗ	2,3	5	3	12	2,5	1	V3
S 4	M4	3,1	5,8	4	15	3	2	V4
S 6	M5	3,9	8	5	20	4	4	V6
S 9	M6	4,6	8,5	6	30	5	5	V9
S 12	M8	6,25	11,3	8	40	6	15	V12
S 15	M10	7,9	13,9	10	45	8	27	V15
S 18	M12	9,6	15,8	12	50	10	43	V18

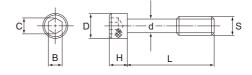


Abb. 3 Spezialmontageschraube

Aufbau der Bestellbezeichnung

Die Bestellbezeichnung hängt von den Typenmerkmalen ab. Richten Sie sich hierzu nach dem entsprechenden Beispiel zur Bestellbezeichnung.

[Längsführungen]

Typen VR und VB

Baureihe/-größe (für Längsführung mit Kugeln: VB)

Hinweis: Ein Set gemäß dieser Bestellbezeichnung bezieht sich auf eine Kombination aus vier Schienen und zwei Käfigen.

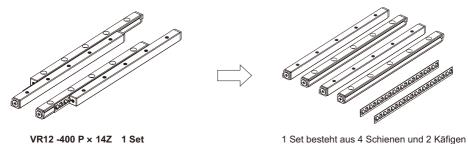
Nur spezielle Schiene

Nur Rollenkäfig

Baugröße Spezielles Schienenmaß in mm

Bestellbezeichnung Anzahl Rollen oder Kugeln (Rollen: R Kugeln: B)

Spezial-Befestigungsschraube


Baugröße Kompatibilitätstabelle siehe **A7-30**

Anmerkungen zur Bestellung

[Bestelleinheiten]

Ein Set Längsführungen bezieht sich auf eine Kombination aus vier Schienen und zwei Käfigen.

• Bestellbeispiele für Längsführungen

Hinweis: Für Informationen zu Schienen-Käfig-Produktkombinationen, die nicht in den Maßtabellen aufgeführt sind, wenden Sie sich bitte an THK.

[Handhabung]

- (1) Die Teile dürfen nicht demontiert werden. Dies führt zu einem Verlust der Funktionsfähigkeit.
- (2) Die Längsführungen nicht fallen lassen oder stoßen. Dies könnte Verletzungen oder Schäden verursachen. Stöße können außerdem die Funktionsfähigkeit beeinträchtigen, auch wenn äußerlich keine Schäden erkennbar ist.
- (3) Tragen Sie bei der Handhabung des Produkts aus Sicherheitsgründen Schutzhandschuhe. Sicherheitsschuhe usw.

[Vorsichtsmaßnahmen]

- (1) Vermeiden Sie das Eindringen von Fremdkörpern wie z. B. Bearbeitungsspänen oder Kühlflüssigkeit in das Produkt. Andernfalls kann es zu Schäden am Produkt kommen.
- (2) Wenn das Produkt in Bereichen verwendet wird, in denen Metallspäne, Korrosion verursachendes Lösungsmittel, Wasser usw. in das Produkt eindringen können, verwenden Sie einen Faltenbalq, Abdeckungen usw.
- (3) Haften Fremdkörper, wie Metallspäne, am Produkt, ist das Produkt zu reinigen und anschließend neu zu schmieren.
- (4) Setzen Sie das Produkt nicht bei Temperaturen von 100°C oder höher ein.
- (5) Kleine Hubbewegungen behindern die Bildung eines Schmierfilms zwischen der Laufbahn und den Wälzkörpern und können zu Tribokorrosion führen. Setzen Sie ein Schmiermittel mit hervorragenden Eigenschaften gegen Tribokorrosion ein. THK empfiehlt außerdem, eine vollständige Hubbewegung der Einheit durchzuführen, um sicherzustellen, dass Laufbahn sowie Kugeln mit Schmiermittel überzogen sind.
- (6) Üben Sie beim Anbringen von Teilen (Zylinderstift, Passfeder usw.) am Produkt nicht zu viel Kraft aus. Dadurch können dauerhafte Verformungen an der Laufbahn entstehen, was zu einem Verlust der Funktionsfähigkeit führen kann.
- (7) Wenn das Produkts mit fehlenden Wälzkörpern verwendet wird, kann dies frühzeitig zu Schäden führen.
- (8) Falls ein Wälzkörper herausfallen sollte, wenden Sie sich bitte an THK anstatt das Produkt zu verwenden.
- (9) Unzureichende Steifigkeit oder Genauigkeit bei Befestigungsteilen verursacht eine Konzentration der Belastung des Lagersatzes auf eine Stelle, und die Leistung des Lagers ist wesentlich geringer. Beachten Sie dementsprechend die Steifigkeit/Genauigkeit des Gehäuses und des Sockels sowie Festigkeit der Befestigungsschrauben.

[Schmierung]

- (1) Vor Inbetriebnahme ist das Korrosionsschutzöl sorgfältig zu entfernen und das Produkt zu schmieren.
- (2) Tragen Sie bei der Schmierung das Schmierfett direkt auf die Laufbahn auf und führen Sie mehrmals eine Hubbewegung des Produkts durch, damit sich das Schmierfett im Inneren verteilt.
- (3) Unterschiedliche Schmiermittel dürfen nicht gemischt werden. Das Mischen von Schmiermittel unter Verwendung desselben Verdickungsmittels kann immer noch nachteilige Wechselwirkungen zwischen den zwei Schmiermittel hervorrufen, wenn diese unterschiedliche Zusätze usw. verwenden.
- (4) Wird das Produkt in Umgebungen eingesetzt, in denen konstante Schwingungen herrschen, oder in speziellen Umgebungen, wie Reinräumen, unter Vakuum oder bei extremen Temperaturen, verwenden Sie das für geeignete Schmierfett.
- (5) Die Konsistenz des Schmierfetts ändert sich je nach Temperatur. Beachten Sie, dass sich auch der Gleitwiderstand der Längsführungen mit der veränderten Konsistenz des Schmierfetts ändert.
- (6) Nach der Schmierung erhöht sich möglicherweise der Gleitwiderstand der Längsführungen aufgrund des Bewegungswiderstands des Schmierfetts. Führen Sie vor der Inbetriebnahme der Maschine einen Probelauf durch, damit sich das Schmierfett vollständig verteilen kann.
- (7) Direkt im Anschluss an die Schmierung kann sich überschüssiges Schmierfett verteilen. Entfernen Sie dieses je nach Bedarf.

- (8) Die Eigenschaften von Schmierfett verschlechtern sich, und die Leistungsfähigkeit der Schmierung lässt im Laufe der Zeit nach. Überprüfen Sie das Schmierfett daher regelmäßig und tragen Sie je nach Häufigkeit der Verwendung der Maschine zusätzlich Schmierfett auf.
- (9) Das Schmierintervall variiert je nach Verwendungs- und Umgebungsbedingungen. Stellen Sie das endgültige Schmierintervall/die Menge anhand der verwendeten Maschine ein.

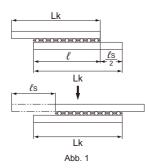
[Montage]

Zur Befestigung der Kreuzrollenführung über die Senkbohrung sind Innensechskantschrauben (JIS B 1176) zu verwenden. In Tab. 1 sind die Empfehlungen von THK für Schrauben angezeigt.

Tab. 1 Befestigungsschrauben

Тур	Ausführung	Gewindetyp
VR1	Kreuzschlitz- Flachkopf- schraube No. 0 (Klasse 3)	M1,4
VR2	Zylinderkopf- schraube von Philips	M2

[•]Standard der Japan Camera Industry Association nach JCIS 10-70 Schraube für Präzisionsgeräte von Philips (Schraube Nr. 0)


Zylinderkopfschraube von Philips JIS B 1111

[Schienenlänge]

Die Rollen- und Kugelkäfige bewegen sich über die Hälfte des Tischhubs in gleicher Richtung mit.

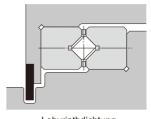
Damit der Käfig bei einer Käfiglänge $_{\ell}\ell^{"}$ und einer Hublänge $_{\ell}\epsilon^{"}$ nicht über den Laufbahnsockel hinausgleitet, ist die Schienenlänge (Lk) mindestens wie folgt zu wählen:

$$Lk \ge \ell + \frac{\ell s}{2}$$

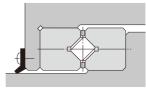
[Käfigversatz]

Der Käfig mit den Rollen (bzw. Kugeln) ermöglicht eine extrem präzise Bewegung. Durch Schwingungen, Trägheit oder Stoßeinwirkungen ist es allerdings möglich, dass der Käfig nicht in idealer Weise mitfährt.

Wenn sie das Produkt unter der folgenden Bedingung verwenden möchten, wenden Sie sich bitte an THK.


- Vertikaler Einsatz
- Pneumatikzvlinderantrieb
- Kurvenantrieb
- Hochgeschwindigkeits-Kurbelantrieb
- Einwirkung einer großen Drehmomentbelastung
- Stoppen des Führungswagens durch Anschlagen am Tisch

[Anschlag]


Die Schienenenden sind mit Anschlägen versehen, so dass der Käfig nicht herausfallen kann. Dabei ist allerdings zu beachten, dass ein häufiges Anstoßen des Käfigs an den Anschlag zu Verschleißerscheinungen und zur Lockerung der Befestigungsschrauben am Anschlag führen kann und der Käfig dennoch herausfällt.

[Schutz vor Verunreinigungen]

Um ein Eindringen von Fremdkörpern in die Führungssysteme zu vermeiden, wird Abdichtungszubehör für die Seitenflächen angeboten (siehe Abb. 2). Zur Abdichtung auf der Vorder- und Rückseite sind Faltenbälge und Teleskopabdeckungen geeignet.

Abstreifer

Abb. 2 Schutzmaßnahmen

[Lagerung]

Lagern Sie die Längsführung horizontal in von THK dafür bestimmten Verpackungen, und vermeiden Sie extreme Temperaturen sowie hohe Feuchtigkeit.

[Entsorgung]

Entsorgen Sie das Produkt ordnungsgemäß als Industrieabfall.

Längsführungen THK Hauptkatalog

B Technische Grundlagen

Merkmale und Typen Merkmale von Längsführungen Aufbau und Merkmale Typenübersicht Ausführungen und Merkmale	B7-2 B7-2 B7-2 B7-3 B7-3
Auswahlkriterien Tragzahlen und Lebensdauer	B7-4 B7-4
Montage	B7-7B7-7B7-8B7-8B7-8
OptionenSpezialmontageschraube	B7-9 B7-9
Bestellbezeichnung Aufbau der Bestellbezeichnung Anmerkungen zur Bestellung Vorsichtsmaßnahmen	B7-10 B7-10 B7-11

A Produktinformation (separat)

Merkmale von Längsführungen • Aufbau und Merkmale Typenübersicht	A7-2 A7-2 A7-2 A7-3 A7-3
Tragzahlen und Lebensdauer	A7-4 A7-4 A7-7
Längsführung Typ VR (VR2)	A7-8 A7-10 A7-14 A7-16 A7-18 A7-20 A7-22 A7-24
MontageBeispiel für die SpieleinstellungVorspannung	A7-28 A7-29 A7-29 A7-29 A7-29
	A7-30 A7-30
Aufbau der Bestellbezeichnung Anmerkungen zur Bestellung	A7-31 A7-31 A7-32

Merkmale von Längsführungen

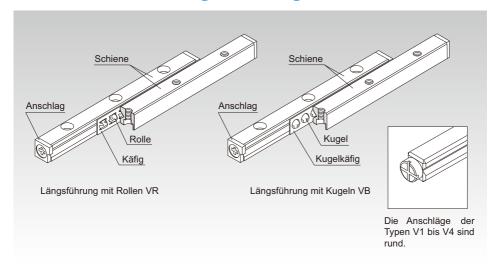


Abb. 1 Aufbau der Kreuzrollenführung VR und der Linearführung VB

Aufbau und Merkmale

Im Typ VR sind Präzisionsrollen in einem Rollenkäfig im rechten Winkel versetzt zueinander angeordnet. Der Rollenkäfig ist mit einer Schiene mit V-förmiger Laufrille kombiniert. Werden zwei Kreuzrollenführungen parallel montiert, kann das Führungssystem Belastungen in allen vier Richtungen aufnehmen. Dank der Möglichkeit, die Kreuzrollenführung vorzuspannen, kann eine spielfreie, hochsteife und leichtgängige Bewegung erzielt werden.

Der Typ VB ist ein reibungsarmes, hochpräzises Linearsystem mit Hubbegrenzung. Er stellt eine Kombination des Kugelkäfigs Typ B mit eng nebeneinander liegenden Präzisionsstahlkugeln mit einer Schiene Typ V dar.

Längsführungen kommen in verschiedenen Geräten zum Einsatz, wie z.B. in Computern und zugehörigen Peripheriegeräten, Messgeräten, Präzisionsgeräten einschließlich Leiterplatten-Bohrmaschinen, optischen Messgeräten, optischen Positioniersystemen, Handhabungsgeräten und Röntgengeräten.

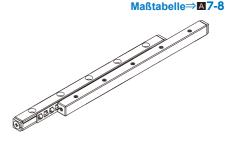
[Lange Lebensdauer, hohe Steifigkeit]

Dank des einzigartigen Haltesystems für die Rollen wird ein etwa um das 1,7-fache größerer Kontaktbereich als bei herkömmlichen Lagern erzielt. Da der Rollenabstand gering ist und entsprechend viele Rollen verwendet werden, ergibt sich im Vergleich mit konventionellen Systemen eine Verdopplung der Steifigkeit und eine sechsfache Verlängerung der Lebensdauer. Dadurch können sicher Längsführungen hergestellt werden, die Vibration und Stoßbelastungen aufnehmen können.

[Leichtgängiger Lauf]

Beim Typ VR sind die Rollen durch einen Rollenkäfig voneinander getrennt. Durch den engen Kontakt zwischen Rollen und Käfig wird der Schmierstoffaustritt reduziert. Dies sorgt für einen leichtgängigen, verschleiß- und reibungsarmen Lauf.

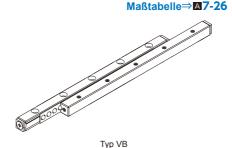
[Ausgezeichnete Korrosionsbeständigkeit]


Die Baureihen VR und VB können aus rostbeständigem Stahl geliefert werden.

Typenübersicht

Ausführungen und Merkmale

Längsführung mit Rollen VR


Ein kompaktes, hochsteifes Linearsystem, dessen Rollenkäfig orthogonal hintereinander angeordnete Präzisionsrollen enthält. Diese laufen über die halbe Hublänge an einer Schiene mit V-Nut ab.

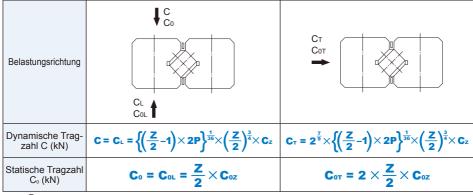
Typ VR

Längsführung mit Kugeln VB

Ein reibungsarmes, hochpräzises Linearsystem, dessen Kugelkäfig in geringen Abständen Präzisionskugeln enthält. Diese laufen über die halbe Hublänge an einer Schiene mit V-Nut ab.

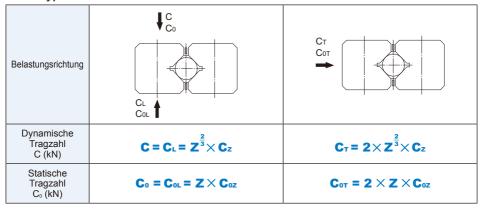
Tragzahlen und Lebensdauer

[Tragzahlen in allen Richtungen]


Die Tragzahlen (Cz und Coz) in den Tabellen beziehen sich auf einen Wälzkörper für Belastungen gemäß der dargestellten Richtungen. Bei der Ermittlung der nominellen Lebensdauer sind die Tragzahlen (C und Co) der tatsächlich eingesetzten Wälzkörper anhand der nachstehenden Gleichung zu berechnen.

 C_z : Dynamische Tragzahl je Wälzkörper gemäß der Maßtabelle (kN) C_{oz} : Statische Tragzahl je Wälzkörper gemäß der Maßtabelle (kN)

Z : Anzahl der verwendeten Wälzkörper (Anzahl von Wälzkörpern im effektiven Tragbereich)


P: Rollenteilung (siehe Seite A7-8 bis A7-25)

Für Typ VR

^{*}wird $\frac{Z}{2}$ ganzzahlig abgerundet.

• Für Typ VB

[Statischer Sicherheitsfaktor fs]

Die Typen VR und VB können während des Betriebs oder im Stillstand Schwingungen und Stößen ausgesetzt sein, und es können Trägheitsmomente durch Anfahren und Abbremsen auftreten. Bei diesen Belastungen ist der statische Sicherheitsfaktor zu berücksichtigen.

$$f_s = \frac{C_0}{P_c}$$

S: Statischer Sicherheitsfaktor (siehe Tab. 1)
Co: Statische Tragzahl (kN)
Co: Berechnete Belastung (kN)

Tab. 1	Statischen	Sicherheitsfaktor (fs'	١
--------	------------	---------------------	-----	---

Maschinen mit Linearsystem	Betriebsbedingungen	Unterer Grenzwert für fs
Industriemaschinen	Ohne Schwingungen oder Stöße	1 bis 1,3
im Allgemeinen	Mit Schwingungen oder Stößen	2 bis 3

[Nominelle Lebensdauer]

Nach der Ermittlung der dynamischen Tragzahl kann die Lebensdauer der Typen VR und VB nach den folgenden Gleichungen berechnet werden.

• Für Typ VR

$$L = \left(\frac{f_{T}}{f_{W}} \cdot \frac{C}{P_{c}}\right)^{\frac{10}{3}} \times 100$$

• Für Typ VB

$$L = \left(\frac{f_{T}}{f_{W}} \cdot \frac{C}{P_{c}}\right)^{3} \times 50$$

Nominelle Lebensdauer (km)
 (Gesamtlaufstrecke, die 90% einer Gruppe baugleicher, unabhängig voneinander arbeitender VR- bzw. VB-Einheiten unter gleichen Betriebsbedingungen ohne Anzeichen von Ermüdung erreichen kann)

C : Dynamische Tragzahl (kN)
Pc : Berechnete Belastung (kN)
fr : Temperaturfaktor (siehe Abb. 1 auf Seite **27-6**)
fw : Belastungsfaktor (siehe Tab. 2 auf **27-6**)

[Zeitbezogene Lebensdauerberechnung]

Nach dem Berechnen der nominellen Lebensdauer (L) kann bei konstanter Hublänge und Zyklenzahl je Minute mit Hilfe der nachfolgenden Gleichung die Lebensdauer in Stunden berechnet werden.

$$L_h = \frac{L \times 10^6}{2 \times \ell_s \times n_t \times 60}$$

 $\begin{array}{lll} L_h & : Lebensdauer & (h) \\ \ell_S & : Hublänge & (mm) \\ n_1 & : Zyklenzahl pro Minute & (min^1) \end{array}$

● f_T: Temperaturfaktor

Überschreitet die Umgebungstemperatur während des Betriebs der Typen VR bzw. VB 100°C, sind die negativen Auswirkungen hoher Temperaturen zu berücksichtigen und die Tragzahlen mit dem Temperaturfaktor aus Abb. 1 zu multiplizieren.

Hinweis: Liegt die Umgebungstemperatur über 100°C, wenden Sie sich bitte an THK.



Abb. 1 Temperaturfaktor (f₁)

fw: Belastungsfaktor

Im Allgemeinen verursachen Maschinen mit oszillierenden Bewegungen beim Betrieb Schwingungen oder Stöße. Generell können im Hochgeschwindigkeitsbetrieb bei wiederholtem Anfahren und Anhalten erzeugte Schwingungen und Stoßbelastungen nur schwer genau bestimmt werden. Sind die tatsächlichen Belastungen der Typen VR und VB nicht messbar oder haben Geschwindigkeit und Stoßbelastungen starken Einfluss, ist die Tragzahl (C bzw. C₀) durch den entsprechenden Belastungsfaktor aus Tab. 2 zu dividieren. Die Tabelle enthält empirisch ermittelte Daten.

Tab. 2 Belastungsfaktor (fw)

Schwingungen/ Stöße	Geschwindigkeit (V)	f _w
sehr geringe	sehr langsam V ≦ 0,25 m/s	1 bis 1,2
gering	langsam 0,25 < V ≦ 1 m/s	1,2 bis 1,5

Montage

Wenn das Spiel mittels Schrauben eingestellt wird:

- (1) Die Schienen 2 und 3 am Sockel und die Schiene 1 an der Montagefläche des Tisches befestigen. Anschließend die Befestigungsschrauben festziehen.
- (2) Die Schiene 4 locker am Tisch montieren. Hinweis: Die Schienenbefestigungsschrauben müssen so ausgeführt sein, dass sie bei installierter Schiene festgeschraubt werden k\u00f6nnen.
- (3) Ordnen Sie den Sockel und die Tische wie in Abb. 1 dargestellt an und führen Sie anschließend den Rollenkäfig vom Ende her ein. Ist ein Einschieben nicht möglich, weil das Spiel zu gering ist, verschieben Sie zunächst Schiene 4 in Richtung der Stellschrauben und wiederholen anschließend das Einsetzen des Käfigs.
- (4) Setzen Sie eine Messuhr gemäß Abb. 1 an. Ziehen Sie anschließend alle Stellschrauben gleichmäßig an, bis fast kein Spiel mehr vorhanden ist. Drücken Sie dabei den Tisch leicht in seitlicher Richtung.
- (5) Montieren Sie den Anschlag am Schienenende.
- (6) Bewegen Sie den Tisch, und stellen Sie die Käfigposition auf den erforderlichen Hub ein.
- (7) Positionieren Sie den Rollenkäfig wie in Abb. 2-1 dargestellt in der Schienenmitte. Ziehen Sie anschließend die Stellschrauben (b, c und d) in dem Bereich, in dem sich der Käfig befindet, gleichmäßig an, bis die Messuhr die erforderliche Einfederung anzeigt. Ziehen Sie die Befestigungsschrauben nach Abschluss der Einstellung fest an.
 - Hinweis: Der Ausschlag der Messuhr entspricht der Vorspannung je Rollenkäfig.
- (8) Verschieben Sie den Tisch wie in Abb. 2-2 dargestellt und stellen Sie die übrigen Stellschrauben (a und e) in der gleichen Weise ein.

Hinweis: Werden zwei oder mehr Einheiten montiert, ermitteln Sie zunächst das Anzugsdrehmoment der Stellschrauben bzw. den Rollwiderstand für die erste Einheit. Installieren Sie anschließend die zweite (bzw. nachfolgende) Einheit mit dem gleichen Anzugsdrehmoment bzw. Rollwiderstand wie die erste Einheit. So werden fast einheitliche Vorspannungen erreicht.

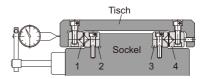
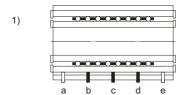
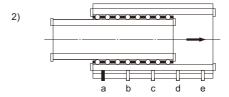
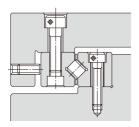
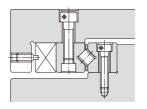
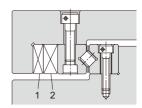



Abb. 1 Installation der Kreuzrollenführung


Abb. 2 Nummerierung der Stellschrauben

Beispiel für die Spieleinstellung


Bei der Konstruktion ist darauf zu achten, dass die Stellschrauben mit der Rollenmitte ausgerichtet sind.

Im Normalfall wirkt die Stellschraube auf die Schiene.

Für höhere Genauigkeit und Steifigkeit wird eine Zwischenplatte verwendet.

Für extrem hohe Genauigkeit und Steifigkeit werden die Keilleisten 1 und 2 verwendet.

Abb. 3 Beispiel für die Spieleinstellung

Vorspannung

Eine zu starke Vorspannung kann zu Verformungen führen, die die Lebensdauer verkürzen oder Störungen hervorrufen. Die zulässige Vorspannung je Rollenkäfig wird in der entsprechenden Maßtabelle. Überwachen Sie die Einfederung der Rollenkontaktfläche, während Sie die Stellschrauben anziehen.

Genauigkeit der Montageoberfläche

Für eine hohe Laufgenauigkeit ist eine bestimmte Genauigkeit bezüglich Parallelität und Geradheit notwendig. Vorzugsweise werden Parallelität und Ebenheit der Schienenmontagefläche durch Schleifen oder ähnliche Methoden der Oberflächenbearbeitung hergestellt und müssen mindestens den Parallelitätswerten der Schiene entsprechen (siehe **A7-7**). Außerdem ist die Schiene so zu montieren, dass ein enger Kontakt mit der Montageoberfläche besteht.

Spezialmontageschraube

Zur Montage der Schiene mit normaler Spieleinstellung verwenden Sie die in der Schiene vorhandene Gewindebohrung (siehe Abb. 1). Hierbei ist es erforderlich, die Bohrungsdurchmesser (d₁ und D₁) groß genug auszuführen, so dass die Schienen eingestellt werden können.

Kann die Befestigungsart nach Abb. 2 konstruktionsbedingt nicht vermieden werden, sind Spezialmontageschrauben (S) zu verwenden (siehe Abb. 3).

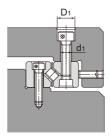


Abb. 1

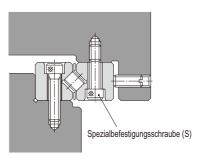


Abb. 2

Tab. 1 Spezialmontageschraube

Einheit: mm

Тур	S	d	D	Н	L	В	Masse [g]	Geeignet für Schiene
S 3	МЗ	2,3	5	3	12	2,5	1	V3
S 4	M4	3,1	5,8	4	15	3	2	V4
S 6	M5	3,9	8	5	20	4	4	V6
S 9	M6	4,6	8,5	6	30	5	5	V9
S 12	M8	6,25	11,3	8	40	6	15	V12
S 15	M10	7,9	13,9	10	45	8	27	V15
S 18	M12	9,6	15,8	12	50	10	43	V18

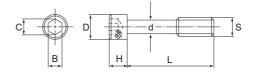


Abb. 3 Spezialmontageschraube

Aufbau der Bestellbezeichnung

Die Bestellbezeichnung hängt von den Typenmerkmalen ab. Richten Sie sich hierzu nach dem entsprechenden Beispiel zur Bestellbezeichnung.

[Längsführungen]

Typen VR und VB

Baureihe/-größe (für Längsführung mit Kugeln: VB)

Hinweis: Ein Set gemäß dieser Bestellbezeichnung bezieht sich auf eine Kombination aus vier Schienen und zwei Käfigen.

Nur spezielle Schiene

<u>V6</u> -200

Baugröße Spezielles Schienenmaß in mm

Nur Rollenkäfig

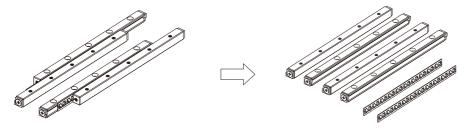
R6 × 13Z

Bestellbezeichnung Anzahl Rollen oder Kugeln (Rollen: R

Kugeln: B)

Spezial-Befestigungsschraube

S6


Baugröße Kompatibilitätstabelle siehe A7-30

Anmerkungen zur Bestellung

[Bestelleinheiten]

Ein Set Längsführungen bezieht sich auf eine Kombination aus vier Schienen und zwei Käfigen.

• Bestellbeispiele für Längsführungen

VR12 -400 P x 14Z 1 Set

1 Set besteht aus 4 Schienen und 2 Käfigen

Hinweis: Für Informationen zu Schienen-Käfig-Produktkombinationen, die nicht in den Maßtabellen aufgeführt sind, wenden Sie sich bitte an THK.

[Handhabung]

- (1) Die Teile dürfen nicht demontiert werden. Dies führt zu einem Verlust der Funktionsfähigkeit.
- (2) Die Längsführungen nicht fallen lassen oder stoßen. Dies könnte Verletzungen oder Schäden verursachen. Stöße können außerdem die Funktionsfähigkeit beeinträchtigen, auch wenn äußerlich keine Schäden erkennbar ist.
- (3) Tragen Sie bei der Handhabung des Produkts aus Sicherheitsgründen Schutzhandschuhe, Sicherheitsschuhe usw.

[Vorsichtsmaßnahmen]

- (1) Vermeiden Sie das Eindringen von Fremdkörpern wie z. B. Bearbeitungsspänen oder Kühlflüssigkeit in das Produkt. Andernfalls kann es zu Schäden am Produkt kommen.
- (2) Wenn das Produkt in Bereichen verwendet wird, in denen Metallspäne, Korrosion verursachendes Lösungsmittel, Wasser usw. in das Produkt eindringen können, verwenden Sie einen Faltenbalq, Abdeckungen usw.
- (3) Haften Fremdkörper, wie Metallspäne, am Produkt, ist das Produkt zu reinigen und anschließend neu zu schmieren.
- (4) Setzen Sie das Produkt nicht bei Temperaturen von 100°C oder höher ein.
- (5) Kleine Hubbewegungen behindern die Bildung eines Schmierfilms zwischen der Laufbahn und den Wälzkörpern und können zu Tribokorrosion führen. Setzen Sie ein Schmiermittel mit hervorragenden Eigenschaften gegen Tribokorrosion ein. THK empfiehlt außerdem, eine vollständige Hubbewegung der Einheit durchzuführen, um sicherzustellen, dass Laufbahn sowie Kugeln mit Schmiermittel überzogen sind.
- (6) Üben Sie beim Anbringen von Teilen (Zylinderstift, Passfeder usw.) am Produkt nicht zu viel Kraft aus. Dadurch können dauerhafte Verformungen an der Laufbahn entstehen, was zu einem Verlust der Funktionsfähigkeit führen kann.
- (7) Wenn das Produkts mit fehlenden Wälzkörpern verwendet wird, kann dies frühzeitig zu Schäden führen.
- (8) Falls ein Wälzkörper herausfallen sollte, wenden Sie sich bitte an THK anstatt das Produkt zu verwenden.
- (9) Unzureichende Steifigkeit oder Genauigkeit bei Befestigungsteilen verursacht eine Konzentration der Belastung des Lagersatzes auf eine Stelle, und die Leistung des Lagers ist wesentlich geringer. Beachten Sie dementsprechend die Steifigkeit/Genauigkeit des Gehäuses und des Sockels sowie Festigkeit der Befestigungsschrauben.

[Schmierung]

- (1) Vor Inbetriebnahme ist das Korrosionsschutzöl sorgfältig zu entfernen und das Produkt zu schmieren.
- (2) Tragen Sie bei der Schmierung das Schmierfett direkt auf die Laufbahn auf und führen Sie mehrmals eine Hubbewegung des Produkts durch, damit sich das Schmierfett im Inneren verteilt.
- (3) Unterschiedliche Schmiermittel dürfen nicht gemischt werden. Das Mischen von Schmiermittel unter Verwendung desselben Verdickungsmittels kann immer noch nachteilige Wechselwirkungen zwischen den zwei Schmiermittel hervorrufen, wenn diese unterschiedliche Zusätze usw. verwenden.
- (4) Wird das Produkt in Umgebungen eingesetzt, in denen konstante Schwingungen herrschen, oder in speziellen Umgebungen, wie Reinräumen, unter Vakuum oder bei extremen Temperaturen, verwenden Sie das für geeignete Schmierfett.
- (5) Die Konsistenz des Schmierfetts ändert sich je nach Temperatur. Beachten Sie, dass sich auch der Gleitwiderstand der Längsführungen mit der veränderten Konsistenz des Schmierfetts ändert.
- (6) Nach der Schmierung erhöht sich möglicherweise der Gleitwiderstand der Längsführungen aufgrund des Bewegungswiderstands des Schmierfetts. Führen Sie vor der Inbetriebnahme der Maschine einen Probelauf durch, damit sich das Schmierfett vollständig verteilen kann.
- (7) Direkt im Anschluss an die Schmierung kann sich überschüssiges Schmierfett verteilen. Entfernen Sie dieses je nach Bedarf.

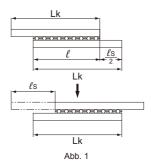
- (8) Die Eigenschaften von Schmierfett verschlechtern sich, und die Leistungsfähigkeit der Schmierung lässt im Laufe der Zeit nach. Überprüfen Sie das Schmierfett daher regelmäßig und tragen Sie je nach Häufigkeit der Verwendung der Maschine zusätzlich Schmierfett auf.
- (9) Das Schmierintervall variiert je nach Verwendungs- und Umgebungsbedingungen. Stellen Sie das endgültige Schmierintervall/die Menge anhand der verwendeten Maschine ein.

[Montage]

Zur Befestigung der Kreuzrollenführung über die Senkbohrung sind Innensechskantschrauben (JIS B 1176) zu verwenden. In Tab. 1 sind die Empfehlungen von THK für Schrauben angezeigt.

Tab. 1 Befestigungsschrauben

Тур	Ausführung	Gewindetyp
VR1	Kreuzschlitz- Flachkopf- schraube No. 0 (Klasse 3)	M1,4
VR2	Zylinderkopf- schraube von Philips	M2


Standard der Japan Camera Industry Association nach JCIS 10-70 Schraube für Präzisionsgeräte von Philips (Schraube Nr. 0)
 Zylinderkopfschraube von Philips JIS B 1111

[Schienenlänge]

Die Rollen- und Kugelkäfige bewegen sich über die Hälfte des Tischhubs in gleicher Richtung mit.

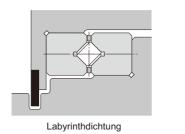
einer Hublänge "\ells" nicht über den Laufbahnsockel hinausgleitet, ist die Schienenlänge (Lk) mindestens wie folgt zu wählen:

$$Lk \ge \ell + \frac{\ell_s}{2}$$

[Käfigversatz]

Der Käfig mit den Rollen (bzw. Kugeln) ermöglicht eine extrem präzise Bewegung. Durch Schwingungen, Trägheit oder Stoßeinwirkungen ist es allerdings möglich, dass der Käfig nicht in idealer Weise mitfährt.

Wenn sie das Produkt unter der folgenden Bedingung verwenden möchten, wenden Sie sich bitte an THK


- Vertikaler Finsatz
- Pneumatikzvlinderantrieb
- Kurvenantrieb
- Hochgeschwindigkeits-Kurbelantrieb
- Einwirkung einer großen Drehmomentbelastung
- Stoppen des Führungswagens durch Anschlagen am Tisch

[Anschlag]

Die Schienenenden sind mit Anschlägen versehen, so dass der Käfig nicht herausfallen kann. Dabei ist allerdings zu beachten, dass ein häufiges Anstoßen des Käfigs an den Anschlag zu Verschleißerscheinungen und zur Lockerung der Befestigungsschrauben am Anschlag führen kann und der Käfig dennoch herausfällt.

[Schutz vor Verunreinigungen]

Um ein Eindringen von Fremdkörpern in die Führungssysteme zu vermeiden, wird Abdichtungszubehör für die Seitenflächen angeboten (siehe Abb. 2). Zur Abdichtung auf der Vorder- und Rückseite sind Faltenbälge und Teleskopabdeckungen geeignet.

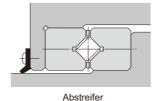


Abb. 2 Schutzmaßnahmen

[Lagerung]

Lagern Sie die Längsführung horizontal in von THK dafür bestimmten Verpackungen, und vermeiden Sie extreme Temperaturen sowie hohe Feuchtigkeit.

[Entsorgung]

Entsorgen Sie das Produkt ordnungsgemäß als Industrieabfall.