

INHALT

Kugelbuchsen Seite 14

Gehäuse Seite 40

Wellenböcke Seite 58

Wellenunterstützungen Seite 66

Standardwellen Seite 76

Quattro-Linearschlitten Seite 78

INFORMATIONEN

Allgemeine Beschreibung Seite 4

Bestellschlüssel Seite 12

Kugelbuchsen Seite 14

Gehäuse Seite 40

Wellenböcke Seite 58

Wellenunterstützungen Seite 66

Standardwellen Seite 76

Quattro-Linearschlitten Seite 78

Allgemeine Beschreibung

Einführung

Kugelbuchsen sind Wälzlager für Längsbewegungen, bei denen die Kugeln durch geschlossene Umlaufbahnen in ständigem Kreislauf in die Lastzone zurückgeführt werden. Daher sind unbegrenzte Hubwege möglich. Die Kugelbuchsen haben die bekannten Vorteile eines Kugellagers, nämlich geringe Reibung und Losbrechkraft, hohe Genauigkeit und Wirkungsgrad.

Besondere Eigenschaften

1. Kompaktes Design

In unseren Kugelbuchsen sind auf engstem Raum 4 bis 6 Kugelreihen untergebracht. Dadurch ist besonders hohe Laufgenauigkeit unter Beanspruchung aus jeder Lastrichtung gewährleistet.

2. Hohe Tragfähigkeit

Die ausschließliche Verwendung gütegesicherter Materialien in Verbindung mit einer ausgereiften Konstruktion gewährleistet optimale Tragzahlen.

3. Höchste Genauigkeit

Das optimale Betriebsspiel ist einer der kritischen Punkte bei der Anwendung von Kugelbuchsen. Unsere Buchsen werden mit exakt bestimmter Bohrungstoleranz geliefert.

Lebensdauer

1. Dynamische Grundbelastungen

Diese Größe gibt die Belastung an, unter der mindestens 90% einer Gruppe gleicher Kugelbuchsen eine Lebensdauer von 10⁵ m erreicht. Die Lebensdauer ist definiert als die zurückgelegte Wegstrecke bis zur Ermüdung des Materials der Kugeln, des Außenrings oder der Welle.

Die Lebensdauer einer Kugelbuchse errechnet sich wie folgt:

L: Lebensdauer

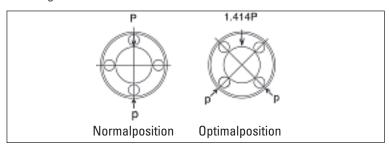
C: dyn. Tragzahl (N)

F: resultierende äußere Kräfte

$$L = \frac{C}{F} \times 10^5$$

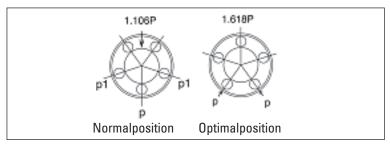
Diese Relation gilt nur bei Verwendung unserer oder gleichwertiger Wellen und bei Temperaturen unter 100°C.

2. Statische Belastbarkeit


Die statische Belastbarkeit Co ist die maximal zulässige Belastung, bei der keine bleibende Verformung auf der Welle auftritt (1/1000 des Kugeldurchmessers).

3. Lastrichtung

Die wirksamen Tragzahlen hängen von der Lastrichtung zur Kugelstellung ab. Die in den Maßtabellen angegebenen Werte gelten für eine Lastrichtung durch die Kugelscheitelstellung. Bei Positionierung der Kugelbuchse in Optimalstellung erhöhen sich die wirksamen Tragzahlen um folgende Faktoren:



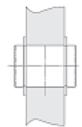
Vier Kugelreihen


 $\frac{Optimum}{Normal} = 1,414$

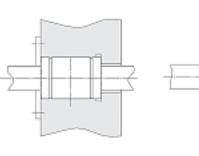
Fünf Kugelreihen

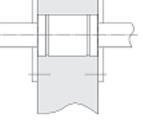
 $\frac{Optimum}{Normal} = 1,463$

Sechs Kugelreihen


 $\frac{Optimum}{Normal} = 1,280$

Einbau


Normkugelbuchsen werden üblicherweise in eine Bohrung H7 eingeschoben und mit Sicherungsringen gehalten. Sie können natürlich auch mit verschraubten Scheiben, Sicherungsblechen und Ringen fixiert, oder geklebt werden. Die offenen Kugelbuchsen haben in der Außenhülse eine Fixierbohrung, womit sie zusätzlich gegen Verdrehen zu sichern sind.


Einbau mit Sicherungsringen

Einbau mit Halteringen

Reibung

Jede einzelne Kugelbuchse wird vor Versand exakt vermessen und auf Reibung getestet. Normalerweise werden Kugelbuchsen mit 2 µm Radialluft geliefert. Beim Einsatz in elektronischen Geräten ist jedoch häufig ein Radialspiel von nahe 0 µm erforderlich. Für diese extremen Anforderungen werden die Laufbahnen der Lager einem speziellen Finishing unterzogen. Sie stellen damit größte Reibungsarmut und stick-slip-freien Lauf sicher.

Um die gewünschte Lagerluft zu erreichen, werden die Kugelbuchsen mit sortierter Bohrungstoleranz mit 2 μ m Abstufung geliefert. Auf Wunsch werden Kugelbuchsen und Wellen mit der erforderlichen Radialluft auch bereits montiert angeboten.

Schmierung

Richtige Schmierung ist eine wichtige Vorraussetzung für eine lange Lebensdauer und für die Realisierung aller technischen Vorteile dieser Kugelbuchsen.

Die Kugelbuchsen und Wellen sind ab Werk mit einem Korrosionsschutzmittel versehen, jedoch nicht betriebsbereit gefettet. Nach der Montage bzw. vor Inbetriebnahme der Maschine sind die Produkte abzuschmieren.

Als Schmiermittel bewährt sich ein, auf Mineralölbasis aufgebautes, schwach verseiftes Lithiumfett der Konsistenzklasse 1-2, z.B. das Fett Microlube GL261 der Firma Klüber Lubrication oder ein vergleichbares Fett. Bei allen besonderen Bedingungen müssen Sonderschmiermittel eingesetzt werden.

Zum Handling, zur Schmierung und zum Einbau der Einheiten beachten Sie bitte die Einbau- und Wartungsanleitung, die jeder Sendung beiliegt.

Käfig

Die Käfige bestehen aus wärmestabilisiertem Polyamid 6, das sich wegen günstigen Notlauf-Eigenschaften ausgezeichnet bewährt hat.

Für Anwendungen bei Dauertemperaturen größer als 100 °C sind Kugelbuchsen mit Stahlkäfig lieferbar.

KUGELBUCHSEN

KB.../KB...GG=mit Kunststoffkäfig
UU = Beidseitig abgedichtet

Seite 14

KBB...G mit Kunststoffkäfig UU = Beidseitig abgedichtet Dünnschicht Korrosionsschutz auf Ni-Basis Seite 16

SB... Kunststoffgehäuse mit Stahleinsätzen Leichtbauausführung Fluchtungsfehlerausgleich

Seite 18

SM...G mit Kunststoffkäfig Miniaturausführung UU = Beidseitig abgedichtet

Seite 20

SM... mit Stahlkäfig UU = Beidseitig abgedichtet Großausführung

Seite 22

Tandemachse
KB...W mit Stahlkäfig
KB...GW mit Kunststoffkäfig
UU = Beidseitig abgedichtet

Seite 24

Flanschbuchse
KBF mit Stahlkäfig
KBF...G mit Kunststoffkäfig
mit Quadratflansch:
KBK mit Stahlkäfig
KBK...G mit Kunststoffkäfig

Seite 26

Flansch-Tandembuchse KBF...W mit Stahlkäfig KBF...GW mit Kunststoffkäfig mit Quadratflansch
KBK...W mit Stahlkäfig
KBK...GW mit Kunststoffkäfig

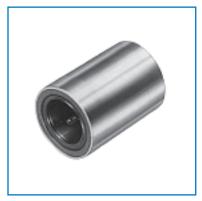
Seite 28

Sonderserie Flansch-Tandembuchse LFWK...GUU

Seite 34

Flansch-Tandembuchse m. zentrischem Rundflansch KBFC... mit Stahlkäfig KBFC...G mit Kunststoffkäfig mit Quadratflansch KBKC... mit Stahlkäfig KBKC...W mit Kunststoffkäfig

Seite 30

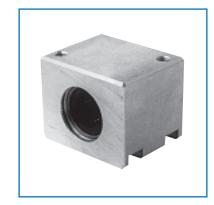

Kompaktausführung KH mit Außenmantel aus Stahlblech tiefgezogen, Kunststoffkäfig UU = Beidseitig abgedichtet

Seite 36

LFK...GUU mit Kunststoffkäfig Beidseitige Abstreifer Keine DIN-Abmessungen

Seite 32

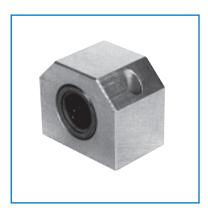
Hochtemperaturausführung Kompaktausführung COMPAKT



GEHÄUSEEINHEITEN

GE... Gehäuse: Aluminium-Druckguß, für fast alle Kugelbuchsenvarianten

Seite 40


LGE... Geschlossene Leichte Ausführung Gehäuse: Aluminium, für fast alle Kugelbuchsenvarianten

Seite 42

LGE...OP Leichte Ausführung mit Segmentausschnitt, UU = Beidseitig abgedichtet, Gehäuse: Aluminium, für fast alle Kugelbuchsenvarianten

Seite 44

CGE...Kompakte Ausführung mit Kugelbuchse Serie KH, UU = abgedichtete Ausführung, Gehäuse: Aluminium

Seite 46

LGE...SOPLeichte Ausführung mit seitlichem Segmentausschnitt,
Gehäuse: Aluminium

Seite 48

FLE...Flanschausführung, UU = Beidseitig abgedichtet, Gehäuse: Aluminium, für fast alle Kugelbuchsenvarianten

Seite 50

TFE... Tandem-Flanschausführung UU = Beidseitig abgedichtet, Gehäuse: Aluminium, für fast alle Kugelbuchsenvarianten

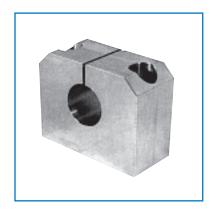
Seite 52

TGE... Geschlossene Tandemausführung, UU = Beidseitig abgedichtet, Gehäuse: Aluminium, für fast alle Kugelbuchsenvarianten

Seite 54

TGE...OPTandemausführung, mit Segmentausschnitt, UU = Beidseitig abgedichtet, für fast alle Kugelbuchsenvarianten

WELLENBÖCKE

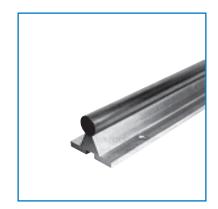

CWB... mit Gehäuseserie CGE kombinierbar Material: Aluminium

Seite 58

WB... Material: Aluminium

Seite 60

LWB... Leichte Ausführung Material: Aluminium


Seite 62

WELLENUNTERSTÜTZUNGEN

FWB... Flanschausführung Material: Aluminium

Seite 64

WU...
WUG...
WUW...

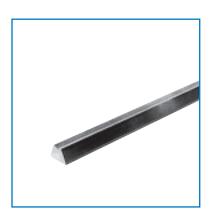
Material: Aluminium

Seite 66

LWU... LWG... LWW...

Material: Aluminium

Seite 68


SWG...-1 SWW...-1 Material: Aluminium

Seite 70

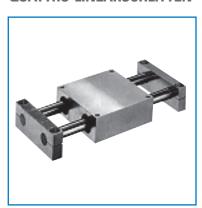
SWG...-2 SWW...-2 Material: Aluminium

Seite 72

NWU... NWG... NWW...

Material: Aluminium

PRÄZISIONSSTAHLWELLEN



Standardwellen, Miniaturwellen, Hohlwellen, Wellen aus Sonderwerkstoffen, korrosionsarme Wellen, korrosionsbeständige Wellen, säurebeständige Wellen, hartverchromte Wellen

Seite 76

QUATTRO-LINEARSCHLITTEN

Einleitung und Erklärung

Seite 78

QGE... Geschlossen mit Stahlkäfig **QGE...G** Geschlossen mit Kunststoffkäfig, Gehäuse: Aluminium

Seite 80

Traversen zu Quattro-Linearschlitten
T...A
T...B
Gehäuse: Aluminium
Seite 82

QGE...OP offene Ausführung mit Stahlkäfig **QGE...GOP** offene Ausführung mit Kunststoffkäfig, beidseitig abgedichtete Standardbuchsen

Kugelbuchsen **BESTELLSCHLÜSSEL**

<u>KB F</u>	<u>/K B</u>	<u>/S 2</u>	<u>5 (</u>	<u> </u>	<u> </u>	<u>U Q</u>	<u> P A</u>	<u>J</u>		
										AJ: Lager einstellbar
										Keine Angabe: Standard
										OP: mit Ausschnitt für Wellenunterstützung Keine Angabe: geschlossen
										UU: beidseitige Dichtung Keine Angabe: ohne Dichtung
										W: Tandemversion Keine Angabe: Standardversion
										G: Kunststoffkäfig keine Angabe: Stahlkäfig
										Wellendurchmesser
										B: Kugelbuchse beschichtet S: Kugelbuchse rostfreier Stahl Keine Angabe: 100Cr6, 1.3505
									ĺ	F: Rundflansch K: Quadratflansch Keine Angabe: ohne Flansch
										Baureihe Kugelbuchse bzw. Gehäuseeinheiten

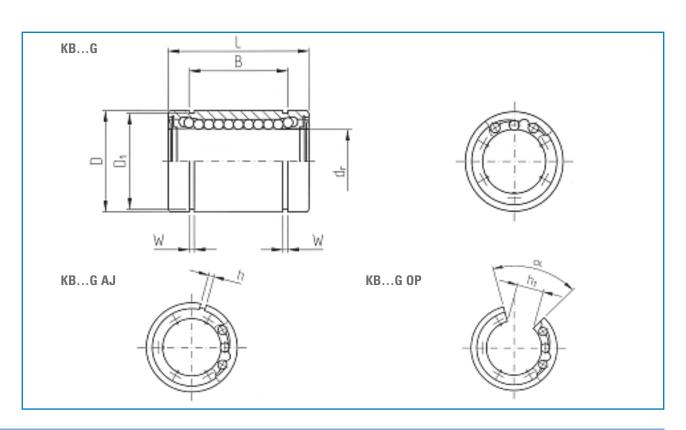
Typ KB.../KB...G

...G=Standardausführung mit Kunststoffkäfig

KB...mit Stahlkäfig

UU: Beidseitig abgedichtet

Auch in rostfreier Ausführung aus Werkstoff 1.4125 lieferbar

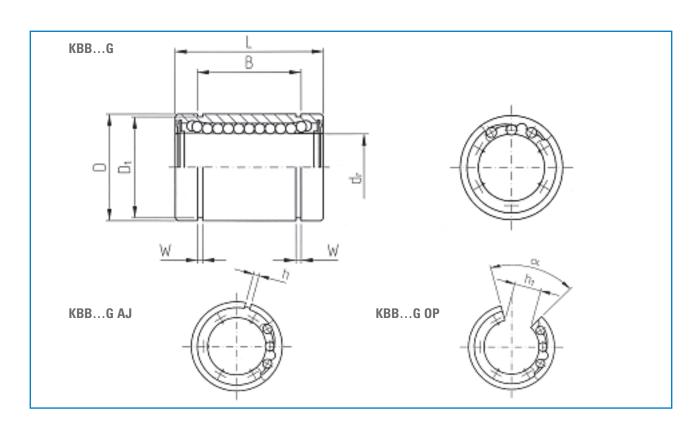

Bezeichnung: KBS.../KBS...G

Wellen	Typenbezeic	hnung								
ø mm	geschlossen	Kugel- reihen	Gewicht kg	Geschlitzt	Kugel- reihen	Gewicht kg	mit Segment- ausschnitt	Kugel- reihen	Gewicht kg	
5	KB 05 G KB 05 G UU	4	0,011	KB 05 G AJ KB 05 G UU AJ	4	0,010				
8	KB 08 G KB 08 G UU	4	0,020	KB 08 G AJ KB 08 G UU AJ	4	0,020				
12	KB 12 G KB 12 G UU	4	0,041	KB 12 G AJ KB 12 G UU AJ	4	0,040	KB 12 G OP KB 12 G UU OP	3	0,032	
16	KB 16 G KB 16 G UU	4	0,057	KB 16 G AJ KB 16 G UU AJ	4	0,056	KB 16 G OP KB 16 G UU OP	3	0,044	
20	KB 20 G KB 20 G UU	5	0,091	KB 20 G AJ KB 20 G UU AJ	5	0,090	KB 20 G 0P KB 20 G UU 0P	4	0,075	
25	KB 25 G KB 25 G UU	6	0,215	KB 25 G AJ KB 25 G UU AJ	6	0,212	KB 25 G OP KB 25 G UU OP	5	0,181	
30	KB 30 G KB 30 G UU	6	0,325	KB 30 G AJ KB 30 G UU AJ	6	0,320	KB 30 G OP KB 30 G UU OP	5	0,272	
40	KB 40 G KB 40 G UU	6	0,705	KB 40 G AJ KB 40 G UU AJ	6	0,694	KB 40 G OP KB 40 G UU OP	5	0,600	
50	KB 50 G KB 50 G UU	6	1,130	KB 50 G AJ KB 50 G UU AJ	6	1,110	KB 50 G 0P KB 50 G UU 0P	5	0,970	
60	KB 60 G KB 60 G UU	6	2,050	KB 60 G AJ KB 60 G UU AJ	6	2,000	KB 60 G OP KB 60 G UU OP	5	1,580	

Wellen	Ans	chlussn	naße	und To	leran	zen								Exzent.	Radial- luft		ag- hlen
ø mm		dr Tol.µm) Tol.µm	L mm	Tol.µm	B mm		W mm	D1 mm	h mm	h1 mm	α	μm	max. μm	C dyn. N	C0 stat. N
5	5	+8/0	12	0/-8	22	0/-200	14,5	0/-200	1,10	11,5	1,0			12	-3	206	265
8	8	+8/0	16	0/-8	25	0/-200	16,5	0/-200	1,10	15,2	1,0			12	-3	265	402
12	12	+8/0	22	0/-9	32	0/-200	22,9	0/-200	1,30	21,0	1,5	7,5	78°	12	-4	510	784
16	16	+9/-1	26	0/-9	36	0/-200	24,9	0/-200	1,30	24,9	1,5	10,0	78°	12	-4	578	892
20	20	+9/-1	32	0/-11	45	0/-200	31,5	0/-200	1,60	30,3	2,0	10,0	60°	15	-6	862	1370
25	25	+11/-1	40	0/-11	58	0/-300	44,1	0/-300	1,85	37,5	2,0	12,5	60°	15	-6	980	1570
30	30	+11/-1	47	0/-11	68	0/-300	52,1	0/-300	1,85	44,5	2,0	12,5	50°	15	-8	1570	2740
40	40	+13/-2	62	0/-13	80	0/-300	60,6	0/-300	2,15	59,0	3,0	16,8	50°	17	-8	2160	4020
50	50	+13/-2	75	0/-13	100	0/-300	77,6	0/-300	2,65	72,0	3,0	21,0	50°	17	-13	3820	7940
60	60	+13/-2	90	0/-15	125	0/-400	101,7	0/-400	3,15	86,5	3,0	27,2	54°	20	-13	4700	9800

Kugelbuchse mit Korrosionsschutz

Typ KBB...G

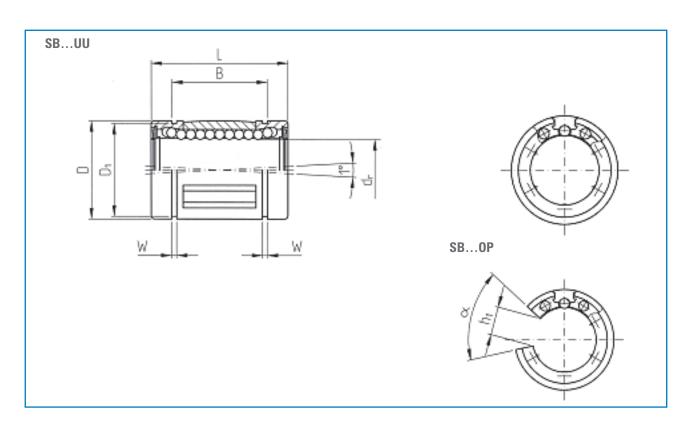

Standardausführung mit Kunststoffkäfig
UU: Beidseitig abgedichtet
Dünnschicht Korrosionsschutz auf Ni-Basis
Vorteile: Kostengünstige Alternative zu Kugelbuchsen aus rostbeständigem Stahl, Beständigkeit: 96h im Salzsprühtest gegen Rotrost

Wellen	Typenbezeic	hnung								
ø mm	geschlossen	Kugel- reihen	Gewicht kg	Geschlitzt	Kugel- reihen	Gewicht kg	mit Segment- ausschnitt	Kugel- reihen	Gewicht kg	
5	KBB 05 G KBB 05 G UU	4	0,011	KBB 05 G AJ KBB 05 G UU AJ	4	0,010				
8	KBB 08 G KBB 08 G UU	4	0,020	KBB 08 G AJ KBB 08 G UU AJ	4	0,020				
12	KBB 12 G KBB 12 G UU	4	0,041	KBB 12 G AJ KBB 12 G UU AJ	4	0,040	KBB 12 G OP KBB 12 G UU 0	3)P	0,032	
16	KBB 16 G KBB 16 G UU	5	0,057	KBB 16 G AJ KBB 16 G UU AJ	5	0,056	KBB 16 G OP KBB 16 G UU O	3 P	0,044	
20	KBB 20 G KBB 20 G UU	5	0,091	KBB 20 G AJ KBB 20 G UU AJ	5	0,090	KBB 20 G OP KBB 20 G UU O	4 P	0,075	
25	KBB 25 G KBB 25 G UU	6	0,215	KBB 25 G AJ KBB 25 G UU AJ	6	0,212	KBB 25 G OP KBB 25 G UU O	5 P	0,181	
30	KBB 30 G KBB 30 G UU	6	0,325	KBB 30 G AJ KBB 30 G UU AJ	6	0,320	KBB 30 G OP KBB 30 G UU O	5 P	0,272	
40	KBB 40 G KBB 40 G UU	6	0,705	KBB 40 G AJ KBB 40 G UU AJ	6	0,694	KBB 40 G OP KBB 40 G UU O	5 P	0,600	
50	KBB 50 G KBB 50 G UU	6	1,130	KBB 50 G AJ KBB 50 G UU AJ	6	1,110	KBB 50 G OP KBB 50 G UU O	5 P	0,970	

Wellen	Anso	chlussn	naße	und To	leran	ızen								Exzent.	Radial- luft		ag- ilen
ø mm		dr Tol.µm	mm		l mm	- Tol.µm	B mm		W mm	D1 mm	h mm	h1 mm	α	μm	max. μm	C dyn. N	C0 stat. N
8	8	+8/0	16	0/-8	25	0/-200	16,5	0/-200	1,10	15,2	1,0			12	-3	118	226
16	16	+9/-1	26	0/-9	36	0/-200	24,9	0/-200	1,30	24,9	1,5	10,0	78°	12	-4	440	735
25	25	+11/-1	40	0/-11	58	0/-300	44,1	0/-300	1,85	37,5	2,0	12,5	60°	15	-6	1000	1960
40	40	+13/-2	62	0/-13	80	0/-300	60,6	0/-300	2,15	59,0	3,0	16,8	50°	17	-8	2200	4100

Typ SB

Leichtbauausführung Kunststoffgehäuse mit Stahl-Laufbahnsegmenten Vorteile: Fluchtungsfehlerausgleich +/-30´ Erhöhte Tragzahlen bei geringem Gewicht UU= Beidseitig abgedichtet



reihen kg SB 12 5 0,021 SB 12 OP 4 0,017 SB 12 UU SB 12 UU OP SB 16 5 0,043 SB 16 OP 4 0,035 SB 16 UU SB 16 UU OP SB 20 6 0,058 SB 20 OP 5 0,048 SB 20 UU SB 25 G 0,123 SB 25 OP 5 0,103 SB 25 UU SB 25 UU OP SB 30 6 0,216 SB 30 OP 5 0,177 SB 30 UU SB 30 UU OP	Wellen	Typenbezeichnur	ng				
SB 12 UU SB 12 UU OP SB 16 5 0,043 SB 16 OP 4 0,035 SB 16 UU SB 16 UU OP SB 16 UU OP 5 0,048 SB 20 6 0,058 SB 20 OP 5 0,048 SB 20 UU SB 20 UU OP SB 20 UU OP 5 0,103 SB 25 UU SB 25 UU OP 5 0,103 SB 30 6 0,216 SB 30 OP 5 0,177 SB 30 UU SB 30 UU OP SB 30 UU OP 5 0,177	ø mm	geschlossen	•		mit Segmentausschnitt		Gewicht kg
SB 16 5 0,043 SB 16 0P 4 0,035 SB 16 UU SB 16 UU 0P SB 16 UU 0P 5 0,048 SB 20 6 0,058 SB 20 UU 0P 5 0,048 SB 20 UU SB 20 UU 0P 5 0,103 SB 25 6 0,123 SB 25 OP 5 0,103 SB 25 UU SB 25 UU 0P SB 30 UO P 5 0,177 SB 30 UU SB 30 UU OP SB 30 UU OP 5 0,177	12	SB 12	5	0,021	SB 12 OP	4	0,017
SB 16 UU SB 16 UU OP SB 20 6 0,058 SB 20 OP 5 0,048 SB 20 UU SB 20 UU OP SB 25 6 0,123 SB 25 OP 5 0,103 SB 25 UU SB 25 UU OP SB 30 6 0,216 SB 30 OP 5 0,177 SB 30 UU SB 30 UU OP		SB 12 UU			SB 12 UU OP		
SB 20 6 0,058 SB 20 OP 5 0,048 SB 20 UU SB 20 UU OP SB 25 6 0,123 SB 25 OP 5 0,103 SB 25 UU SB 25 UU OP SB 30 6 0,216 SB 30 OP 5 0,177 SB 30 UU SB 30 UU OP	16	SB 16	5	0,043	SB 16 OP	4	0,035
SB 20 UU SB 20 UU OP SB 25 6 0,123 SB 25 OP 5 0,103 SB 25 UU SB 25 UU OP SB 30 6 0,216 SB 30 OP 5 0,177 SB 30 UU SB 30 UU OP		SB 16 UU			SB 16 UU OP		
SB 25 6 0,123 SB 25 OP 5 0,103 SB 25 UU SB 25 UU OP SB 30 6 0,216 SB 30 OP 5 0,177 SB 30 UU SB 30 UU OP	20	SB 20	6	0,058	SB 20 OP	5	0,048
SB 25 UU SB 25 UU OP SB 30 6 0,216 SB 30 OP 5 0,177 SB 30 UU SB 30 UU OP		SB 20 UU			SB 20 UU OP		
SB 30 6 0,216 SB 30 0P 5 0,177 SB 30 UU SB 30 UU 0P	25	SB 25	6	0,123	SB 25 OP	5	0,103
SB 30 UU SB 30 UU OP		SB 25 UU			SB 25 UU OP		
	30	SB 30	6	0,216	SB 30 OP	5	0,177
SB 40 6 0.333 SB 40 OP 5 0.275		SB 30 UU			SB 30 UU OP		
0 0,000	40	SB 40	6	0,333	SB 40 OP	5	0,275
SB 40 UU SB 40 UU OP		SB 40 UU			SB 40 UU OP		

Wellen	Anso	chlussma	ße und	Toleran	zen								Tra zah	ig- len
ø mm	d mm	lr Tol.µm	mm) Tol.µm	mm	L Tol.µm		B Tol.μm	W mm	D1 mm	h1 mm	α	C dyn. N	C0 stat. N
12	12	+8/0	22	0/-9	32	+/-200	22,9	0/-200	1,30	21,0	6,5	66°	1020	1290
16	16	+9/-1	26	0/-9	36	+/-200	24,9	0/-200	1,30	24,9	9,0	68°	1250	1550
20	20	+9/-1	32	0/-11	45	+/-200	31,5	0/-200	1,60	30,3	9,0	55°	2090	2630
25	25	+11/-1	40	0/-11	58	+/-200	44,1	0/-300	1,85	37,5	11,5	57°	3780	4720
30	30	+11/-1	47	0/-11	68	+/-200	52,1	0/-300	1,85	44,5	14,0	57°	5470	6810
40	40	+13/-2	62	0/-13	80	+/-200	60,6	0/-300	2,15	59,0	19,5	56°	6590	8230

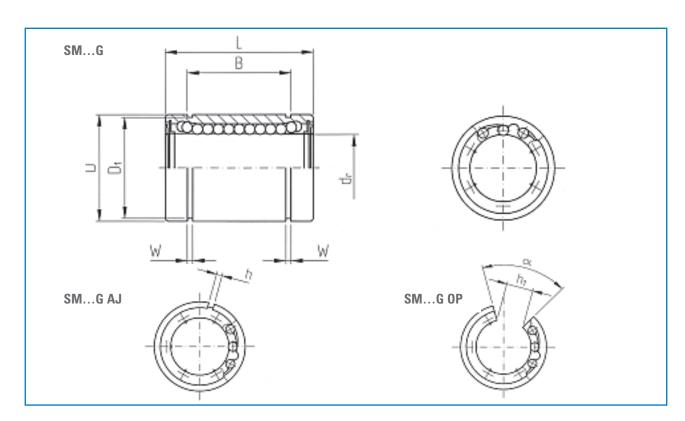
Typ SM...G

Miniaturausführung mit Kunststoffkäfig

UU = Beidseitig abgesdichtet

Auch in rostfreier Ausführung aus Werkstoff 1.4125 lieferbar. Bezeichnung SMS...G

Achtung: Bohrungstoleranz Maß dr beachten.

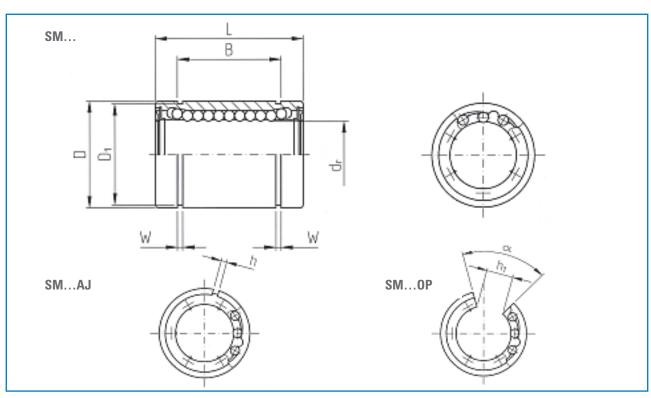

Diese Baureihe ist bei hochgenauer Anwendung für Wellen der Toleranz g6 ausgelegt. Standardmäßig sind Wellen mit Toleranz h6 geeignet.

Wellen	Typenbezeic	hnung								
ø mm	geschlossen	Kugel- reihen	Gewicht g	geschlitzt	Kugel- reihen	Gewicht g	mit Segment- ausschnitt	Kugel- reihen	Gewicht g	
3	SM 03 G SM 03 G UU	4	1,350							
4	SM 04 G SM 04 G UU	4	1,900							
5	SM 05 G SM 05 G UU	4	4,000							
6	SM 06 G SM 06 G UU	4	7,600	SM 06 G AJ SM 06 G UU AJ	4	7,500				
8	SM 08 SG SM 08 SG UU	4	10,400	SM 08 SG AJ SM 08 SG UU AJ	4	10,000				
8	SM 08 G SM 08 G UU	4	15,000	SM 08 G AJ SM 08 G UU AJ	4	14,700				
10	SM 10 G SM 10 G UU	4	29,500	SM 10 G AJ SM 10 G UU AJ	4	29,000	SM 10 G 0P SM 10 G UU 0P	3	30,000	

Wellen	Ansc	hlussma	ße und	Tol	eranze	n								Exz	ent.	Radial- luft		rag- hlen
ø mm	mm	dr Tol.µm hochgenau	Tol.µm	mm	D Tol.µm	mm	- Tol.μm	B mm Tol.µn	W n mm	D1 mm	h mr	h1 n mm	α	hochgenau µm	Standard µm	max. μm	C dyn. N	C0 stat. N
3	3	0/-5	0/-8	7	0/-9	10	0/-120							4	8	-3	70	107
4	4	0/-5	0/-8	8	0/-9	12	0/-120							4	8	-3	90	130
5	5	0/-5	0/-8	10	0/-9	15	0/-120	10,2 0/-20	0 1,1	9,6				4	8	-3	170	210
6	6	0/-6	0/-9	12	0/-11	19	0/-200	13,5 0/-20	0 1,1	11,5	1			8	12	-3	210	270
8	8	0/-6	0/-9	15	0/-11	17	0/-200	11,5 0/-20	0 1,1	14,3	1			8	12	-3	180	220
8	8	0/-6	0/-9	15	0/-11	24	0/-200	17,5 0/-20	0 1,1	14,3	1			8	12	-3	280	400
10	10	0/-6	0/-9	19	0/-11	29	0/-200	22,0 0/-20	1,3	18,0	1	6,8	80°	8	12	-4	380	560

Typ SM...

Großausführung mit Stahlkäfig
UU = Beidseitig abgedichtet
Achtung: Bohrungstoleranz Maß dr beachten.
Diese Baureihe ist bei hochgenauer Anwendung für Wellen
der Toleranz g6 ausgelegt. Standardmäßig sind Wellen mit
Toleranz h6 geeignet.



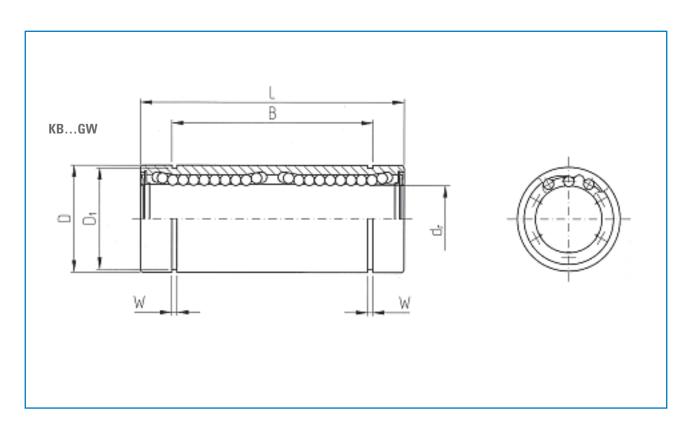
Wellen	Typenbezeic	hnung							
ø mm	geschlossen	Kugel- reihen	Gewicht kg	geschlitzt	Kugel- reihen	Gewicht kg	mit Segment- ausschnitt	Kugel- reihen	Gewicht kg
80	SM 80 SM 80 UU	6	4,520	SM 80 AJ SM 80 UU AJ	6	4,400	SM 80 OP SM 80 UU OP	5	3,750
100	SM 100 SM 100 UU	6	8,600	SM 100 AJ SM 100 UU AJ	6	8,540	SM 100 OP SM 100 UU OP	5	7,200
120	SM 120 SM 120 UU	8	15,000	SM 120 AJ SM 120 UU AJ	8	14,900	SM 120 OP SM 120 UU OP	6	11,600
150	SM 150 SM 150 UU	8	20,250	SM 150 AJ SM 150 UU AJ	8	20,150	SM 150 OP SM 150 UU OP	6	15,700

We	ellen	Anscl	nlussma	ße und	Toleranze	en							Exz	ent.	Radial- luft		ag- hlen
n	ø nm		dr Tol.µm hochgenau	Tol.µm	D mm Tol.μm	L mm Tol.µm	Β mm Tol.μι	W m mm	D1 mm	h mm	h1 mm	α	hochgenau µm	Standard µm	max. μm	C dyn. N	C0 stat. N
	80	80	0/-9	0/-15	120 0/-22	140 0/-400	105,5 0/-4	00 4,15	116	3	40	50°	17	25	-20	7350	16000
1	00	100	0/-10	0/-20	150 0/-25	175 0/-400	125,5 0/-4	00 4,15	145	3	50	50°	20	30	-20	14100	34800
1	20	120	0/-10	0/-20	180 0/-25	200 0/-400	158,6 0/-4	00 4,15	175	3	85	80°	20	30	-25	16400	40000
1	50	150	0/-13	0/-25	210 0/-29	240 0/-400	170,6 0/-4	00 5,15	204	3	105	80°	25	40	-25	21100	54300

Kugelbuchse in Tandemausführung

mit Stahlkäfig Typ KB...W mit Kunststoffkäfig Typ KB...GW

UU = Beidseitig abgedichtet Auch in rostfreier Ausführung aus Werkstoff 1.4125 lieferbar. Bezeichnung: KBS...W, KBS...GW Vorteile: größere Steifigkeit, höhere Tragfähigkeit, bessere


Führungsgenauigkeit, reduzierter Montageaufwand

Wellen	Typenbezeichnung		Gewicht	An				
ø mm	Stahlkäfig	Kunststoffkäfig	kg	-	lr Tol.μm	[mm) Tol.µm	
8	KB 08 W	KB 08 GW	0,040	8	+9/-1	16	0/-9	
12	KB 12 W	KB 12 GW	0,080	12	+9/-1	22	0/-11	
16	KB 16 W	KB 16 GW	0,115	16	+11/-1	26	0/-11	
20	KB 20 W	KB 20 GW	0,180	20	+11/-1	32	0/-13	
25	KB 25 W	KB 25 GW	0,430	25	+13/-2	40	0/-13	
30	KB 30 W	KB 30 GW	0,615	30	+13/-2	47	0/-13	
40	KB 40 W	KB 40 GW	1,400	40	+16/-4	62	0/-15	
50	KB 50 W	KB 50 GW	2,320	50	+16/-4	75	0/-15	
60	KB 60 W	KB 60 GW	3,920	60	+16/-4	90	0/-20	

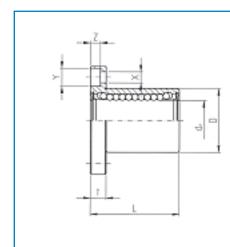
Wellen	Anschlussmaß	Se und Toleranzen		Exzentrität	Tragzal	nlen
ø mm	L mm Tol.µm	Β mm Tol.μm	W mm	μm	C dyn. N	C0 stat. N
8	46 0/-300	33,0 0/-300	1,10	15	430	820
12	61 0/-300	45,8 0/-300	1,30	15	830	1600
16	68 0/-300	49,8 0/-300	1,30	15	940	1820
20	80 0/-300	61,0 0/-300	1,60	17	1400	2800
25	112 0/-400	82,0 0/-400	1,85	17	1600	3200
30	123 0/-400	104,2 0/-400	1,85	17	2550	5600
40	151 0/-400	121,2 0/-400	2,15	20	3500	8200
50	192 0/-400	155,2 0/-400	2,65	20	6200	16200
60	209 0/-400	170,0 0/-400	3,15	25	7600	32600

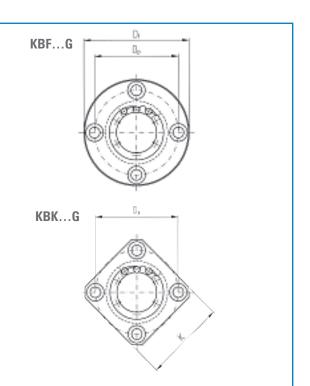
Kugelbuchse Flanschausführung

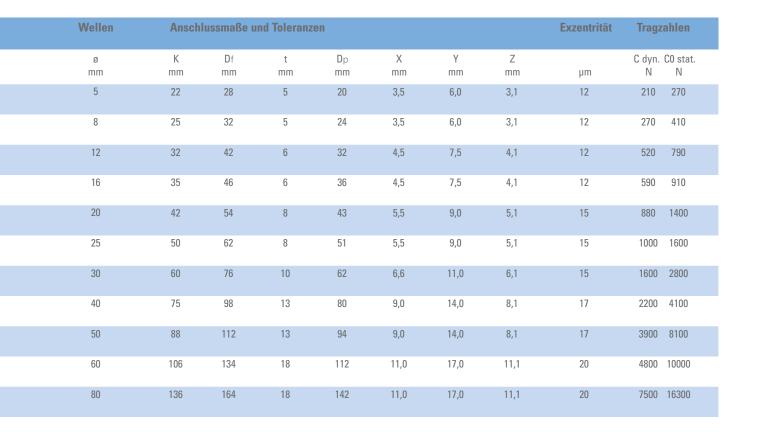
mit Stahlkäfig Typ KBF mit Kunststoffkäfig Typ KBF...G mit Quadratflansch und Stahlkäfig Typ KBK mit Quadratflansch und Kunststoffkäfig Typ KBK...G

UU = Beidseitig abgedichtet Auch in rostfreier Ausführung aus Werkstoff 1.4125 lieferbar. Bezeichnung: KBFS/KBKS

Vorteile: exakte Geometrie, Gehäuse nicht erforderlich, einfache Montage und Austauschbarkeit, direkt in Maschinen-Rahmen montierbar.




Typenbezeichnung		Gewicht	Anschlussmaße und Toleranzen							
Stahlkäfig	Kunststoffkäfig	kg			_	•	l mm	- Tol.μm		
	KBF 05 G KBK 05 G	0,020	5	+8/0	12	0/-13	22	0/-300		
KBF 08 KBK 08	KBF 08 G KBK 08 G	0,033	8	+8/0	16	0/-13	25	0/-300		
KBF 12 KBK 12	KBF 12 G KBK 12 G	0,064	12	+8/0	22	0/-16	32	0/-300		
KBF 16 KBK 16	KBF 16 G KBK 16 G	0,090	16	+9/-1	26	0/-16	36	0/-300		
KBF 20 KBK 20	KBF 20 G KBK 20 G	0,147	20	+9/-1	32	0/-19	45	0/-300		
KBF 25 KBK 25	KBF 25 G KBK 25 G	0,295	25	+11/-1	40	0/-19	58	0/-300		
KBF 30 KBK 30	KBF 30 G KBK 30 G	0,465	30	+11/-1	47	0/-19	68	0/-300		
KBF 40 KBK 40	KBF 40 G KBK 40 G	0,975	40	+13/-2	62	0/-22	80	0/-300		
KBF 50 KBK 50	KBF 50 G KBK 50 G	1,545	50	+13/-2	75	0/-22	100	0/-300		
KBF 60 KBK 60	KBF 60 G KBK 60 G	2,780	60	+13/-2	90	0/-25	125	0/-300		
KBF 80 KBK 80		5,920	80	+16/-4	120	0/-25	165	0/-300		
	Stahlkäfig KBF 08 KBK 08 KBF 12 KBK 12 KBF 16 KBK 16 KBF 20 KBF 25 KBK 25 KBF 30 KBK 30 KBF 40 KBK 40 KBF 50 KBK 50 KBF 60 KBK 60 KBF 80	Stahlkäfig Kunststoffkäfig	Stahlkäfig Kunststoffkäfig kg KBF 05 G 0,020 KBK 05 G 0,033 KBF 08 KBF 08 G 0,033 KBK 08 KBK 08 G 0,064 KBF 12 KBF 12 G 0,064 KBK 12 KBK 12 G 0,090 KBK 16 KBF 16 G 0,090 KBK 16 KBK 16 G 0,147 KBK 20 KBF 20 G 0,147 KBK 20 KBK 20 G 0,295 KBK 25 KBK 25 G 0,295 KBK 30 KBF 30 G 0,465 KBK 30 KBK 30 G 0,975 KBK 40 KBF 40 G 0,975 KBK 50 KBF 50 G 1,545 KBF 60 KBF 60 G 2,780 KBF 80 5,920	Stahlkäfig Kunststoffkäfig kg KBF 05 G 0,020 5 KBF 08 KBF 08 G 0,033 8 KBK 08 KBK 08 G 0,064 12 KBK 12 KBF 12 G 0,064 12 KBK 12 KBK 12 G 0,090 16 KBK 16 KBK 16 G 0,090 16 KBK 20 KBF 20 G 0,147 20 KBF 20 KBF 20 G 0,295 25 KBK 25 KBF 25 G 0,295 25 KBF 30 KBF 30 G 0,465 30 KBF 30 KBF 30 G 0,975 40 KBK 40 KBK 40 G KBF 50 G 1,545 50 KBF 50 KBF 50 G 2,780 60 KBF 60 KBF 60 G 2,780 60 KBF 80 5,920 80	Stahlkäfig Kunststoffkäfig kg	Stahlkäfig Kunststoffkäfig kg	Stahlkäfig Kunststoffkäfig kg dr mm Tol.µm D mm Tol.µm Tol.µm KBF 05 G	Stahlkäfig	Stahlkäfig	Stahlkäfig Kunststoffkäfig kg dr mm Tol.μm Tol.μm mm Tol.μm mm Tol.μm mm Tol.μm mm Tol.μm mm Tol.μm mm Tol.μm Tol.μm mm Tol.μm mm Tol.μm Tol.μm Tol.μm Tol.μm mm Tol.μm Tol



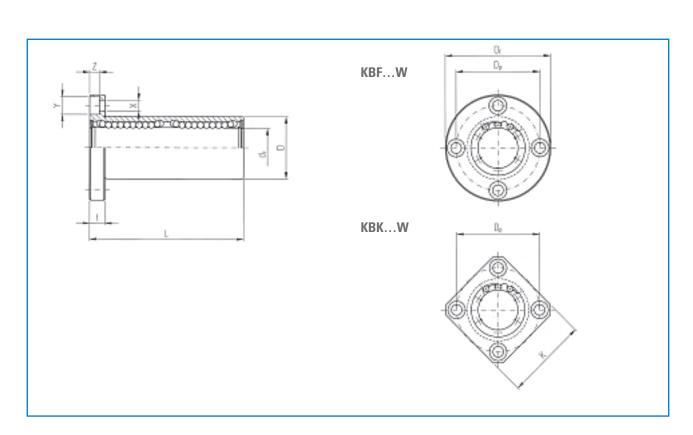
Tandembuchse mit Flansch

mit Stahlkäfig Typ KBF...W mit Kunststoffkäfig Typ KBF...GW mit Quadratflansch und Stahlkäfig Typ KBK...W mit Quadratflansch und Kunststoffkäfig Typ KBK...GW

UU = Beidseitig abgedichtet Auch in rostfreier Ausführung aus Werkstoff 1.4125 lieferbar. Bezeichnung: KBFS...W, KBFS...GW,

KBKS...W, KBKS...GW

Vorteile: exakte Geometrie, Gehäuse nicht erforderlich, einfache Montage und Austauschbarkeit, direkt in Maschinen-Rahmen montierbar.

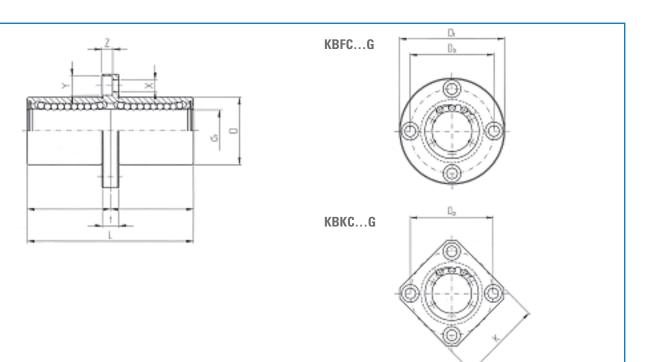


Wellen	Typenbezeichnung		Gewicht	Anschlussmaße und Toleranzen					
ø mm	Stahlkäfig	Kunststoffkäfig	kg		lr Tol.µm		D Tol.µm	mm	L Tol.µm
8	KBF 08 W KBK 08 W	KBF 08 GW KBK 08 GW	0,059 0,051	8	+9/-1	16	0/-13	46	+/-300
12	KBF 12 W KBK 12 W	KBF 12 GW KBK 12 GW	0,110 0,090	12	+9/-1	22	0/-16	61	+/-300
16	KBF 16 W KBK 16 W	KBF 16 GW KBK 16 GW	0,160 0,135	16	+11/-1	26	0/-16	68	+/-300
20	KBF 20 W KBK 20 W	KBF 20 GW KBK 20 GW	0,260 0,225	20	+11/-1	32	0/-19	80	+/-300
25	KBF 25 W KBK 25 W	KBF 25 GW KBK 25 GW	0,540 0,500	25	+13/-2	40	0/-19	112	+/-300
30	KBF 30 W KBK 30 W	KBF 30 GW KBK 30 GW	0,815 0,720	30	+13/-2	47	0/-19	123	+/-300
40	KBF 40 W KBK 40 W	KBF 40 GW KBK 40 GW	1,805 1,600	40	+16/-4	62	0/-22	151	+/-300
50	KBF 50 W KBK 50 W	KBF 50 GW KBK 50 GW	2,820 2,620	50	+16/-4	75	0/-22	192	+/-300
60	KBF 60 W KBK 60 W	KBF 60 GW KBK 60 GW	4,920 4,480	60	+16/-4	90	0/-25	209	+/-300

Wellen	Anschluss	maße und To	leranzen					Exzentrität	Tragza	hlen
ø mm	K mm	Df mm	t mm	Dp mm	X mm	Y mm	Z mm	μm	C dyn. N	C0 stat. N
8	25	32	5	24	3,5	6,0	3,1	15	430	820
12	32	42	6	32	4,5	7,5	4,1	15	830	1600
16	35	46	6	36	4,5	7,5	4,1	15	940	1820
20	42	54	8	43	5,5	9,0	5,1	17	1400	2800
25	50	62	8	51	5,5	9,0	5,1	17	1600	3200
30	60	76	10	62	6,6	11,0	6,1	17	2550	5600
40	75	98	13	80	9,0	14,0	8,1	20	3500	8200
50	88	112	13	94	9,0	14,0	8,1	20	6200	16200
60	106	134	18	112	11,0	17,0	11,1	25	7700	20400

Tandembuchse mit zentrischem Flansch

mit Stahlkäfig Typ KBFC mit Kunststoffkäfig Typ KBFC...G mit Quadratflansch und Stahlkäfig Typ KBKC mit Quadratflansch und Kunststoffkäfig Typ KBKC...G


UU = Beidseitig abgedichtet Auch in rostfreier Ausführung aus Werkstoff 1.4125 lieferbar. Bezeichnung: KBFCS...W, KBFCS...GW, KBKCS...W, KBKCS...GW

Vorteile: exakte Geometrie, Gehäuse nicht erforderlich, einfache Montage und Austauschbarkeit, direkt in Maschinen-Rahmen montierbar.

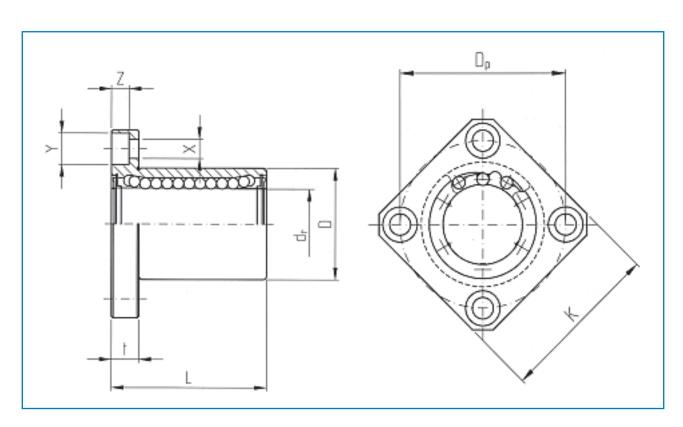
Wellen	Typenbezeichnung		Gewicht	Anschlussmaße und Toleranzen					
ø mm	Stahlkäfig	Kunststoffkäfig	kg	dr mm Tol.	μm m	D m Tol.μm	L mm	Tol.μm	
8	KBFC 08 KBKC 08	KBFC 08 G KBKC 08 G	0,059 0,051	8 +9/	-1 1	6 0/-13	46	+/-300	
12	KBFC 12 KBKC 12	KBFC 12 G KBKC 12 G	0,110 0,090	12 +9/	-1 2	2 0/-16	61	+/-300	
16	KBFC 16 KBKC 16	KBFC 16 G KBKC 16 G	0,160 0,090	16 +11,	/-1 2	6 0/-16	68	+/-300	
20	KBFC 20 KBKC 20	KBFC 20 G KBKC 20 G	0,135 0,225	20 +11,	/-1 3	2 0/-19	80	+/-300	
25	KBFC 25 KBKC 25	KBFC 25 G KBKC 25 G	0,540 0,500	25 +13,	/-2 4	0 0/-19	112	+/-300	
30	KBFC 30 KBKC 30	KBFC 30 G KBKC 30 G	0,815 0,720	30 +13,		7 0/-19		+/-300	
40	KBFC 40 KBKC 40	KBFC 40 G KBKC 40 G	1,805 1,600	40 +16	/-4 6	2 0/-22	151	+/-300	
50	KBFC 50 KBKC 50	KBFC 50 G KBKC 50 G	2,820 2,620	50 +16,	/-4 7	5 0/-22	192	+/-300	
60	KBFC 60 KBKC 60	KBFC 60 G KBKC 60 G	4,920 4,480	60 +16	/-4 9	0 0/-25	209	+/-300	

Wellen	Ansch	lussmaße und 1	Toleranzen					Exzentrität	Tragza	hlen
ø mm	K mm	Df mm	t mm	Dp mm	X mm	Y mm	Z mm	μm	C dyn. N	C0 stat. N
8	25	32	5	24	3,5	6,0	3,1	15	430	820
12	32	42	6	32	4,5	7,5	4,1	15	830	1600
16	35	46	6	36	4,5	7,5	4,1	15	940	1820
20	42	54	8	43	5,5	9,0	5,1	17	1400	2800
25	50	62	8	51	5,5	9,0	5,1	17	1600	3200
30	60	76	10	62	6,6	11,0	6,1	17	2550	5600
40	75	98	13	80	9,0	14,0	8,1	20	3500	8200
50	88	112	13	94	9,0	14,0	8,1	20	6200	16200
60	106	134	18	112	11,0	17,0	11,1	25	7700	20400

Flanschbuchse mit Kunststoffkäfig und beidseitigen Abstreifern

Typ LFK...GUU

Durch die Beschränkung auf wenige Baugrößen und die Fertigung in Großserie sind diese Kugelbuchsen besonders preisgünstig.


Diese Baureihe weicht vom DIN-Standard ab.

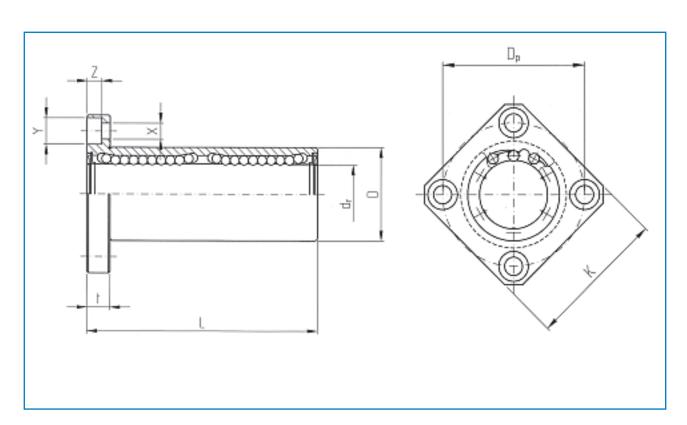
Wellen	Typenbezeichnung	Gewicht	Anschlussmaße	und Toleranzen	
ø mm		kg	dr mm Tol.μm	D mm Tol.µm	
20	LFK 20 G UU	0,145	20 0/-11	32 0/-16	
25	LFK 25 G UU	0,300	25 0/-11	40 0/-16	
30	LFK 30 G UU	0,460	30 0/-11	47 0/-11	

Wellen	Anschlu	Anschlussmaße und Toleranzen				Flansch				Tragz	Tragzahlen	
ø mm	L mm	K mm	Df mm	t mm		Dp mm	X mm	Y mm	Z mm	C dyn. N	C0 stat. N	
20	42	42	54	8		43	5,5	9	5,1	610	1010	
25	58	50	62	8		51	5,5	9	5,1	1000	1960	
30	68	60	76	10		62	5,5	11	6,1	1400	2500	

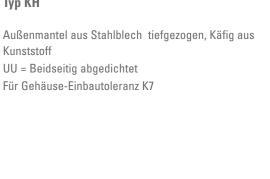
Tandemflanschbuchse mit Kunststoffkäfig und beidseitigen Abstreifern

Typ LFWK...GUU

Sonderserie Tandemkugelbuchse mit Quadratflansch $\mathsf{LFWK}...\mathsf{GUU}$

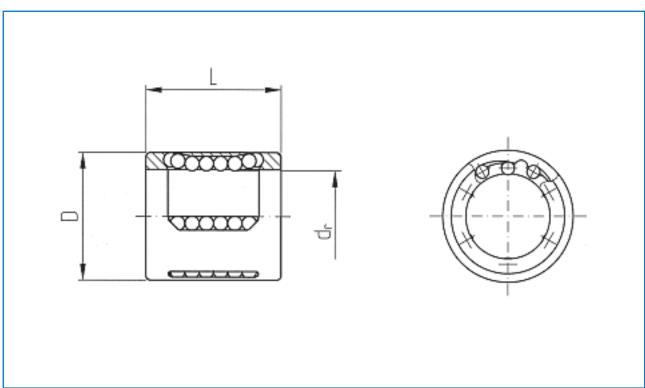

Diese Kugelbuchsen entsprechen hinsichtlich Material und Qualität den Standardkugelbuchsen. Bitte beachten Sie die Maß- und Toleranzabweichungen dr und D.

Wellen	Typenbezeichnung	Gewicht	Anschlussmaße	und Toleranzen	
ø mm		kg	dr mm Tol.µm	D mm Tol.μm	
20	LFWK 20 G UU	0,225	20 0/-12	32 0/-16	
25	LFWK 25 G UU	0,475	25 0/-12	40 0/-16	
30	LFWK 30 G UU	0,575	30 0/-12	45 0/-16	



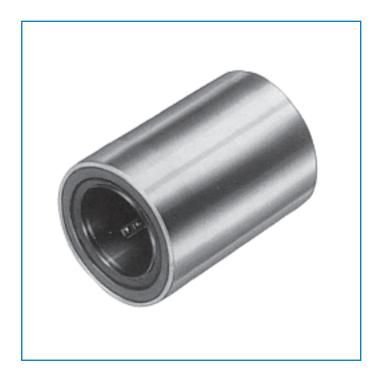

Wellen	Anschl	Anschlussmaße und Toleranzen				Flansch				Tragzahlen	
ø mm	L mm	K mm	Df mm	t mm	Dp mm	X mm	Y mm	Z mm	C dyn. N	C0 stat. N	
20	80	42	54	8	43	5,5	9	5,1	1400	2750	
25	112	50	62	8	51	5,5	9	5,1	1560	3140	
30	122	58	74	10	60	6,6	11	6,1	2490	5490	

Kompaktausführung


Тур КН

Typenbezeichnung	Anschlus	smaße und Tolera	anzen	Gewicht
	dr mm	D mm	L mm	kg
KH 0622	6	12	22	0,007
KH 0824	8	15	24	0,012
KH 1026	10	17	26	0,015
KH 1228	12	19	28	0,019
KH 1428	14	21	28	0,021
KH 1630	16	24	30	0,028
KH 2030	20	28	30	0,033
KH 2540	25	35	40	0,066
KH 3050	30	40	50	0,095
KH 4060	40	52	60	0,182
KH 5070	50	62	70	0,252

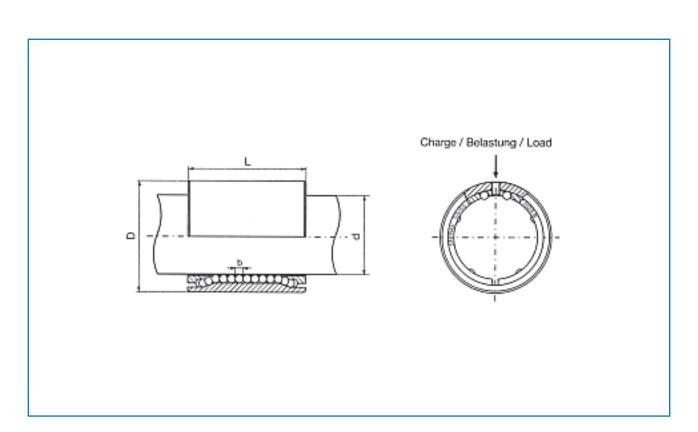
	Tragza	ahlen	
C dyn. min	CO stat. min	C0 dyn.	CO stat.
N	N	N	N
340	239	390	340
410	280	475	400
510	370	590	520
670	510	800	740
690	520	830	760
890	620	1060	910
1110	790	1170	1010
2280	1670	2420	2130
3300	2700	3300	3100
5300	4450	5300	4950
6800	4300	6800	7000
	N 340 410 510 670 690 890 1110 2280 3300 5300	C dyn. min N C0 stat. min N N 340 239 410 280 510 370 670 510 690 520 890 620 1110 790 2280 1670 3300 2700 5300 4450	N N N 340 239 390 410 280 475 510 370 590 670 510 800 690 520 830 890 620 1060 1110 790 1170 2280 1670 2420 3300 2700 3300 5300 4450 5300



Kugelbuchse

Typ COMPAKT

Kompaktausführung für den Hochtemperaturbereich Durch kleine Abmessung vielseitig einsetzbar. Besonderheiten: komplett aus Metall, massiver Kugelkäfig aus gefrästem Messing, Kugelreihen symmetrisch zur Lastachse, geeignet für hohe Belastungen. Zulässige Betriebstemperatur:


-30°C bis +200°C (ohne Abstreifer)

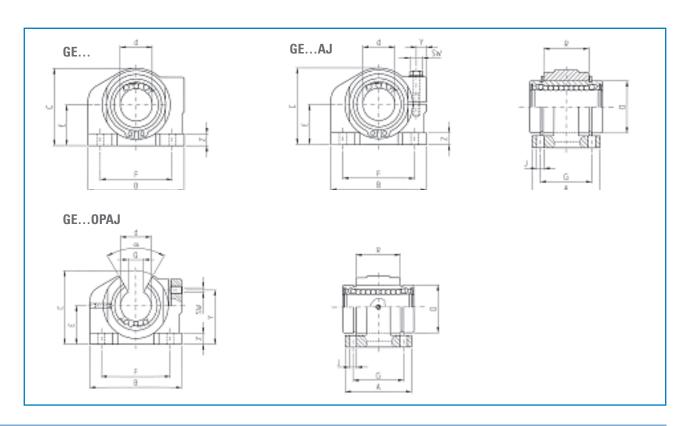
Wellen	Typenbezeio	Typenbezeichnung		Abmo	essungen			Tragzahlen
ø mm	COMPAKT	Kugel- reihen	g	d	D	L	b	CO stat. N
12	1219	6	30	12	19	28	2,0	710
16	1624	6	50	16	24	30	2,0	1.100
20	2028	6	60	20	28	30	2,0	1.800
25	2535	6	126	25	35	40	2,5	2.800
30	3040	8	186	30	40	50	2,5	4.100
40	4052	8	330	40	52	60	3,0	7.300

Gehäuseeinheiten

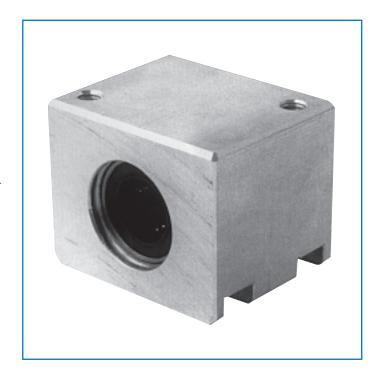
Geschlossener Typ GE...
Geschlossen, einstellbarer Typ GE...AJ
Mit Segmentausschnitt für Wellenunterstützung,
einstellbarer Typ GE...OPAJ

UU= Beidseitig abgedichtet

Gehäuse Material: Aluminium Druckguß GE 16 - GE 50 Wahlweise mit fast allen Kugelbuchsenvarianten lieferbar. Unsere Gehäuse-Einheiten sind mit Präzisions-Linear-Kugellagern in geschlossener, geschlitzter oder offener Ausführung bestückt. Sie können Belastungen bis zur Höhe der Tragzahl des Lagers und zwar aus jeder Richtung aufnehmen. Der Einbau der Einheiten ist stehend, hängend und seitlich möglich.


/ Typenbezeichnung	Abmessungen Company of the Company o										
	d mm	D mm	A mm	B mm	C mm	E ±0,01 mm	F ±0,15 mm				
GE 12 GE 12 AJ GE 12 OPAJ	12	22	32	43	34,0	18	32				
GE 16 GE 16 AJ GE 16 OPAJ	16	26	35	50	41,0	22	40				
GE 20 GE 20 AJ GE 20 OPAJ	20	32	42	60	47,5	25	45				
GE 25 GE 25 AJ GE 25 OPAJ	25	40	54	74	60,0	30	60				
GE 30 GE 30 AJ GE 30 OPAJ	30	47	60	84	67,0	35	68				
GE 40 GE AJ 40 GE 40 OPAJ	40	62	78	108	87,0	45	86				
GE 50 GE AJ 50 GE 50 OPAJ	50	75	70	130	98,0	50	108				

Abme	ssungen								Gewicht
ø mm	G ±0,15 mm	J mm	R mm	Z mm	Q mm	Y mm	SW	α	kg
12	23	4,5	20	4,8	-	-	-	-	0,08
					-	5,5	7,0	-	0,08
					7,5	23,0	2,0	78°	0,07
16	26	4,5	22	5,5	-	-	-	-	0,12
					-	6,0	7,0	-	0,12
					10,0	30,0	2,5	78°	0,10
20	32	4,5	28	7,0	-	-	-	-	0,21
					-	7,5	7,0	-	0,21
					10,0	35,0	2,5	60°	0,17
25	40	5,5	40	8,0	-	-	-	-	0,43
					-	8,0	8,0	-	0,43
					12,5	42,0	3,0	60°	0,38
30	45	6,6	48	9,0	-	-	-	-	0,64
					-	9,5	10,0	-	0,64
					12,5	49,0	3,0	50°	0,56
40	58	9,0	56	11,0	-	-	-	-	1,23
					-	12,5	13,0	-	1,23
					16,8	65,0	4,0	50°	1,16
50	50	9,0	72	12,5	-	-	-	-	2,07
					-	14,0	13,0	-	1,07
					21,0	72,0	4,0	50°	1,80

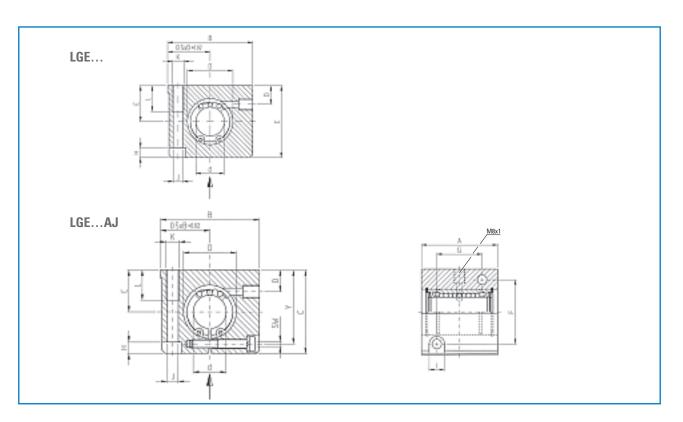


Gehäuseeinheiten, leichte Ausführung

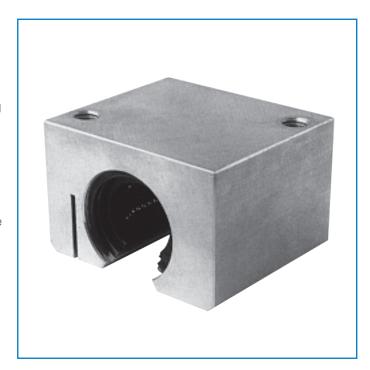
Geschlossener Typ LGE...
Geschlossener, einstellbarer Typ LGE...AJ

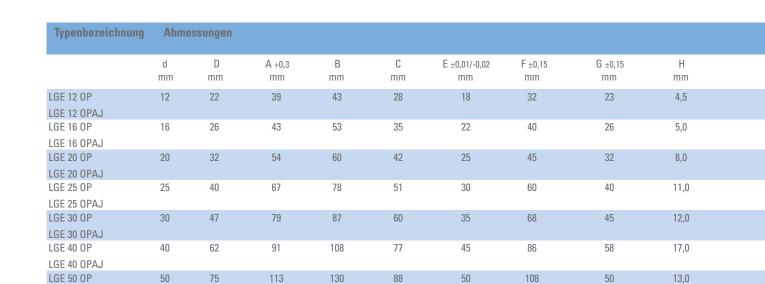
UU= Beidseitig abgedichtet Gehäuse Material: Aluminium Wahlweise mit fast allen Kugelbuchsenvarianten lieferbar.

Technische Änderung: sukzessive Ausführung der Gehäuse mit Anschlagkante


Typenbezeichnung	Abmessungen Company of the Company o										
	d mm	D mm	A +0,3 mm	B mm	C mm	E ±0,01/-0,02 mm	F ±0,15 mm				
LGE 08 LGE 08 AJ	8	16	32	35	28	13	25				
LGE 12 LGE 12 AJ	12	22	39	43	35	18	32				
_GE 16 _GE 16 AJ	16	26	43	53	42	22	40				
.GE 20 .GE 20 AJ	20	32	54	60	50	25	45				
.GE 25 .GE 25 AJ	25	40	67	78	60	30	60				
GE 30 GE 30 AJ	30	47	79	87	70	35	68				
.GE 40 .GE 40 AJ	40	62	91	108	90	45	86				
.GE 50 .GE 50 AJ	50	75	113	130	105	50	108				

Abmes	ssungen								Gewicht
ø mm	G ±0,15 mm	H mm	l mm	J mm	K mm	O mm	Υ	SW	kg
8	20	14	6	3,2	M4	8	- 23,8	- 2,5	0,08 0,08
12	23	10	8	4,2	M5	10	- 31,2	- 2,5	0,14 0,14
16	26	12	10	5,2	M6	12	- 37,5	- 3,0	0,20 0,20
20	32	26	11	6,8	M8	13	- 44,2	4,0	0,38 0,38
25	40	20	15	8,6	M10	15	- 53,7	- 5,0	0,73 0,73
30	45	22	15	8,6	M10	16	- 63,0	- 5,0	1,12 1,12
40	58	30	18	10,3	M12	20	- 81,0	- 6,0	2,30 2,30
50	50	18	20	14,0	M16	24	94,5	6,0	3,89 3,89

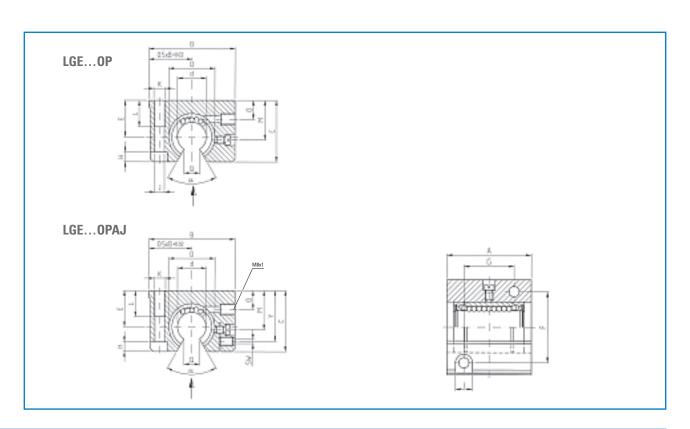



Gehäuseeinheiten, leichte Ausführung

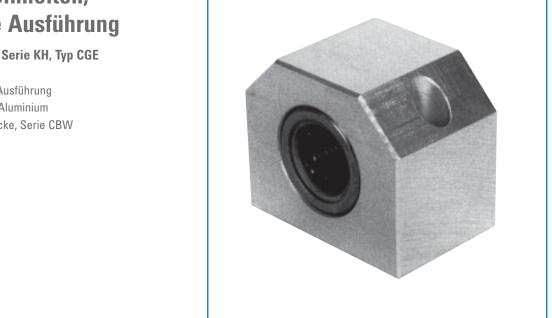
Mit Segmentausschnitt Typ LGE...OP
Mit Segmentausschnitt, einstellbarer Typ LGE...OPAJ

UU= Beidseitig abgedichtet Gehäuse Material: Aluminium Wahlweise mit fast allen Kugelbuchsenvarianten lieferbar.

Technische Änderung: sukzessive Ausführung der Gehäuse mit Anschlagkante



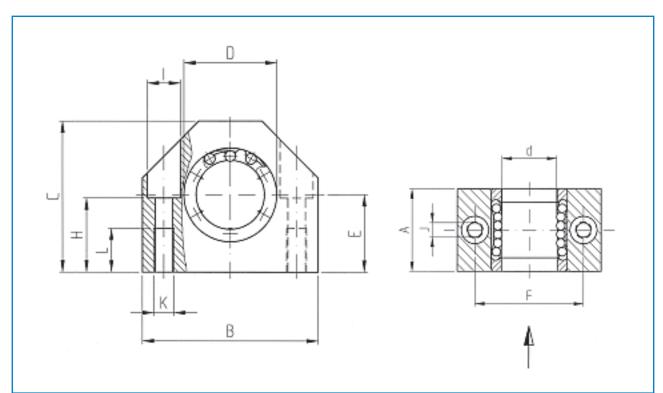
LGE 50 OPAJ


Abme	essungen										Gewicht
ø mm	l mm	J mm	K	L mm	M mm	0 mm	Q mm	α	Y mm	SW	kg
12	8	4,2	M5	11	16,65	8	7,5	60°	-	-	0,10
16	10	5,2	M6	13	22,00	12	10,0	60°	24 -	3	0,17
20	11	6,8	M8	18	25,00	13	10,0	60°	30	3	0,28
25	15	8,6	M10	22	31,50	15	12,5	60°	35 -	3	0,60
									43	3	
30	15	8,6	M10	22	33,00	16	12,5	60°	- 50	3	0,90
40	18	10,3	M12	26	43,50	20	16,8	60°	- 66	- 3	1,70
50	20	13,5	M16	34	47,50	20	21,0	50°	-	-	2,80
									76	3	

Gehäuseeinheiten, kompakte Ausführung

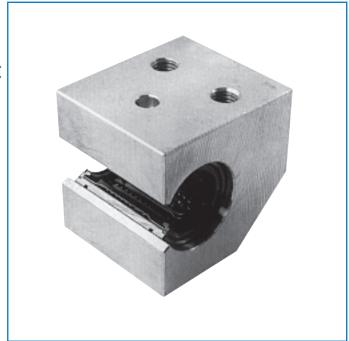
Mit Kugelbuchse Serie KH, Typ CGE

UU= abgedichtete Ausführung Gehäuse Material: Aluminium Zubehör: Wellenböcke, Serie CBW



Typenbezeichnung	Abmessun	gen			
	d	D K7	A +0,3	В	С
	mm	mm	mm	mm	mm
CGE 12	12	19	28	40	33
CGE 16	16	24	30	45	38
CGE 20	20	28	30	53	45
CGE 25	25	35	40	62	54
CGE 30	30	40	50	67	60
CGE 40	40	52	60	87	76
CGE 50	50	62	70	103	92

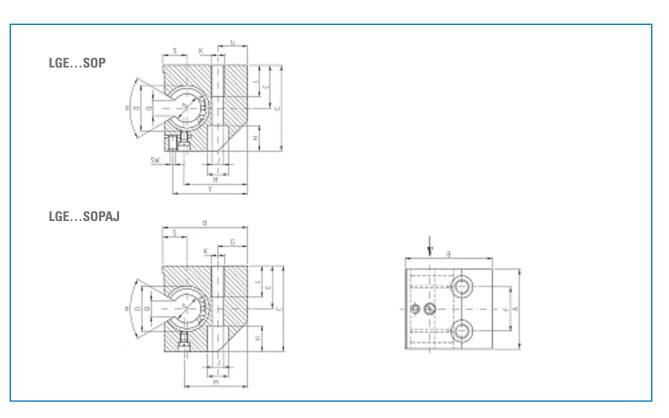
Abmes	ssungen							Gewicht
ø mm	E+0,01/-0,02 mm	F ±0,15 mm	H mm	l H13 mm	J mm	K	L mm	kg
12	17	29	16	8	4,3	M5	11	0,08
16	19	34	18	8	4,3	M5	11	0,12
20	23	40	22	10	5,3	M6	13	0,15
25	27	48	26	11	6,6	M8	18	0,29
30	30	53	29	11	6,6	M8	18	0,42
40	39	69	38	15	8,4	M10	22	0,82
50	47	82	46	18	10,5	M12	26	1,33


Gehäuseeinheiten, leichte Ausführung mit seitlichem Segmentausschnitt

LGE...SOP

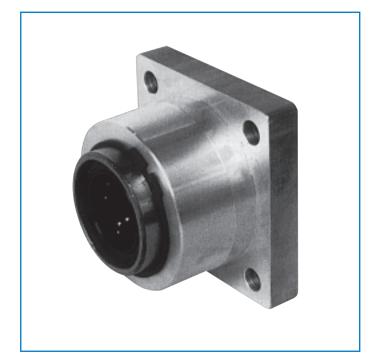
LGE...SOPAJ einstellbar

UU= Beidseitig abgedichtet Gehäuse Material: Aluminium Wahlweise mit fast allen Kugelbuchsenvarianten lieferbar.


Technische Änderung: sukzessive Ausführung der Gehäuse mit Anschlagkante

Typenbezeichnung	Abme	ssungen						
	d mm	D mm	A +0,3 mm	B mm	C mm	E +0,01/-0,02 mm	F mm	G mm
LGE 20 SOP LGE 20 SOPAJ	20	32	54	60	60	30	30	21
LGE 25 SOP LGE 25 SOPAJ	25	40	67	75	72	35	36	26
LGE 30 SOP LGE 30 SOPAJ	30	47	79	86	82	40	42	27
LGE 40 SOP LGE 40 SOPAJ	40	62	91	110	100	45	48	35
LGE 50 SOP LGE 50 SOPAJ	50	75	113	127	115	50	62	39

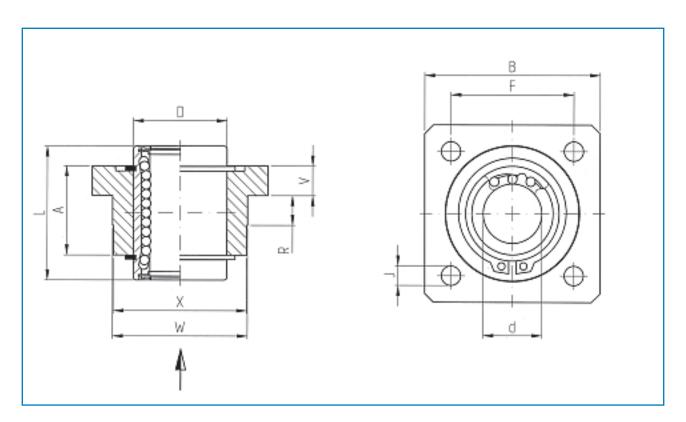
Abmessungen												Gewicht
ø mm	H mm	l mm	J mm	K	L mm	M mm	Q mm	S +0,01/-0,02 mm	Y mm	SW mm	α	kg
20	18	15	8,4	M10	22	43,0	10,0	17	- 53	3	60°	0,20
25	22	18	10,5	M12	26	55,5	12,5	21	- 67	- 3	60°	0,75
30	27	20	13,5	M16	34	59,0	12,5	25	- 76	3	60°	1,25
40	33	26	17,5	M20	43	76,5	16,8	32	- 99	- 3	60°	2,00
50	33	26	17,5	M20	50	86,5	21,0	38	- 112	- 3	50°	3,00



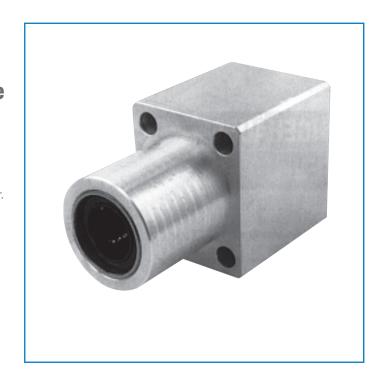
Flansch-Gehäuseeinheiten

Typ FLE...

UU= abgedichtete Ausführung Gehäuse Material: Aluminium Wahlweise mit fast allen Kugelbuchsenvarianten lieferbar.

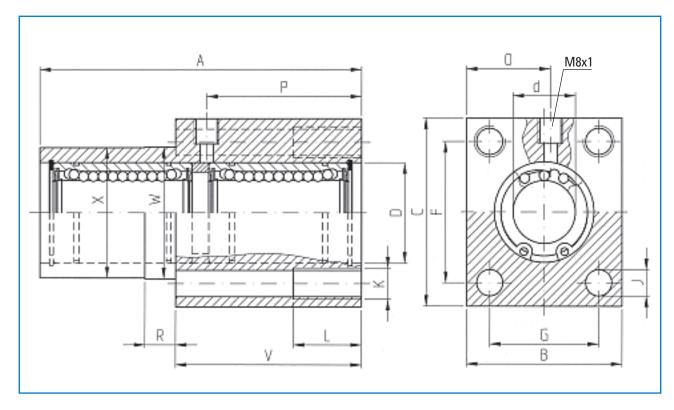


Typenbezeichnung	Abmessu	ngen			
	d mm	D mm	A -01/+0,3 mm	B mm	F ±0,25 mm
FLE 12	12	22	22	40	30
FLE 16	16	26	24	50	35
FLE 20	20	32	30	60	42
FLE 25	25	40	42	70	54
FLE 30	30	47	50	80	60
FLE 40	40	62	59	100	78
FLE 50	50	75	75	130	98


Abmes	sungen						Gewicht
ø mm	J mm	L mm	R mm	V mm	W g7 mm	X -0,2/-0,5 mm	kg
12	5,5	32	10	6	32	32	0,09
16	5,5	36	10	8	38	38	0,12
20	6,6	45	10	10	46	46	0,22
25	6,6	58	10	12	58	58	0,45
30	9,0	66	10	14	66	66	0,85
40	11,0	80	10	16	90	90	1,40
50	11,0	100	10	18	100	100	2,60

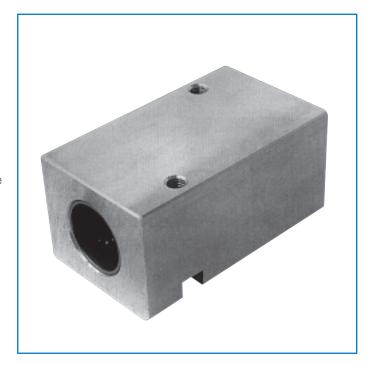
Tandem-Flansch-Gehäuseeinheiten, kombinierte Flanschgehäuse

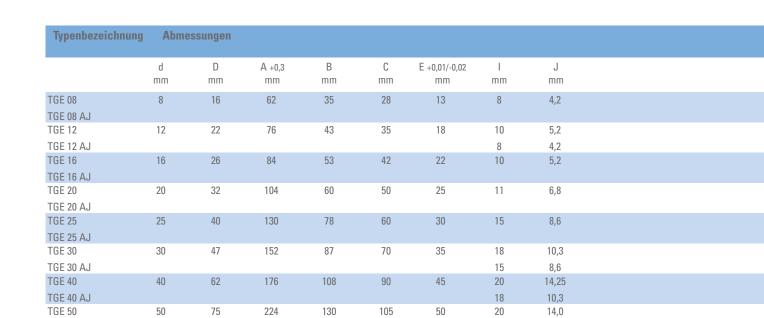
Typ TFE...


UU= Beidseitig abgedichtet Gehäuse Material: Aluminium Wahlweise mit fast allen Kugelbuchsenvarianten lieferbar.

Typenbezeich	nung Abmess	ungen					
	d mm	D mm	A mm	B mm	C mm	F ±0,15 mm	G ±0,15 mm
TFE 12	12	22	76	34	42	32	24
TFE 16	16	26	84	40	50	38	28
TFE 20	20	32	104	50	60	45	35
TFE 25	25	40	130	60	74	56	42
TFE 30	30	47	152	70	84	64	50

Abmes	sungen									Gewicht
ø mm	J mm	K	L mm	O mm	P mm	R mm	V mm	W g7 mm	X -0,2/-0,5 mm	kg
12	5,3	M6	13	19	36	10	46	30	30	0,20
16	6,6	M8	18	22	40	10	50	35	35	0,32
20	8,4	M10	22	27	50	10	60	42	42	1,00
25	10,5	M12	26	32	63	10	73	52	52	1,00
30	13,5	M16	34	37	74	10	82	61	61	1,50

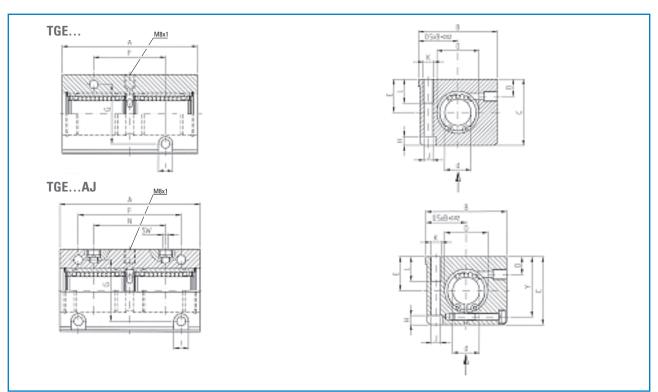



Tandem-Gehäuseeinheiten

Geschlossen Typ TGE...
Geschlossen, einstellbar Typ TGE...AJ

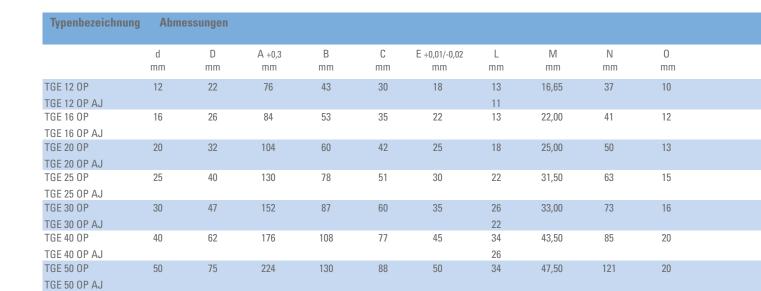
UU= Beidseitig abgedichtet Gehäuse Material: Aluminium Wahlweise mit fast allen Kugelbuchsenvarianten lieferbar.

Technische Änderung: sukzessive Ausführung der Gehäuse mit Anschlagkante



TGE 50 AJ

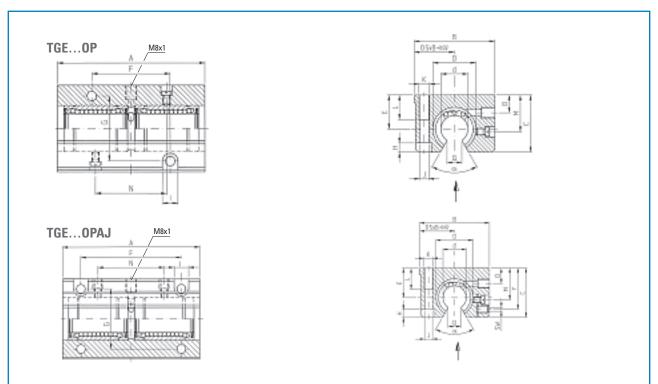
Abmessungen (1997)										
ø mn		L mm	O mm	F ±0,15 mm	G ±0,15 mm	H mm	Y mm	N mm	SW mm	kg
8	M5	13	8	35	25	10	-	-	-	0,15
	M5	11	8	50	25	14	23,8	32	2,5	0,15
12	2 M6	13	10	40	30	10	-	-	-	0,31
	M5	11	10	56	32	10	31,2	40	2,5	0,31
16	6 M6	13	12	45	36	12	-	-	-	0,47
	M6	13	12	64	40	12	37,5	44	3,0	0,47
20) M8	18	13	55	45	16	-	-	-	0,80
	M8	18	13	76	45	16	44,2	53	4,0	0,80
25	M10	22	15	70	54	20	-	-	-	1,54
	M10	22	15	94	60	20	53,7	66	5,0	1,54
30	M12	26	16	85	62	22	-	-	-	2,35
	M10	22	16	106	68	22	63,0	78	5,0	2,35
40	M16	34	20	100	80	30	-	-	-	4,58
	M12	26	20	124	86	30	81,0	88	6,0	4,58
50	M16	34	20	125	100	17,5	-	-	-	7,84
	M16	34	20	160	108	13	94,0	118	8,0	7,84

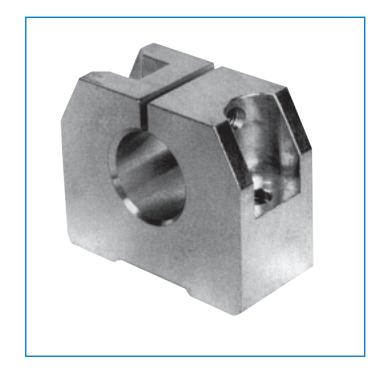

Tandem-Gehäuseeinheiten

Offen, mit Segmentausschnitt Typ TGE...OP
Mit Segmentausschnitt, einstellbarer Typ TGE...OPAJ

UU= Beidseitig abgedichtet Gehäuse Material: Aluminium Wahlweise mit fast allen Kugelbuchsenvarianten lieferbar.

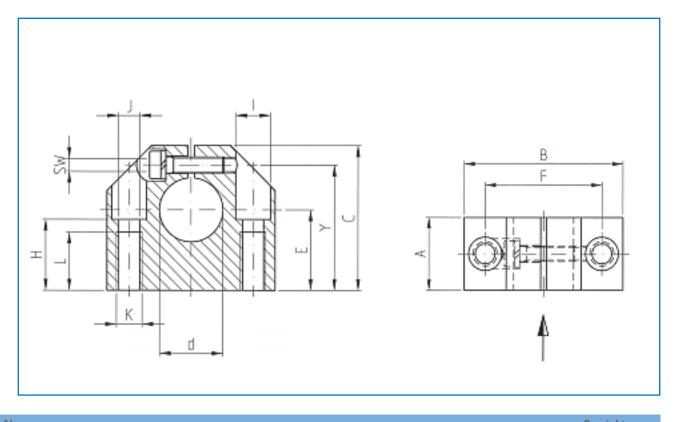
Technische Änderung: sukzessive Ausführung der Gehäuse mit Anschlagkante





Abmessungen												
	ø mm	F ±0,15 mm	G ±0,15 mm	H mm	l mm	J mm	К	Y mm	SW mm	Q	α	kg
	12	40	30	5	10	5,2	M6	-	-	7,5	60°	0,26
		56	32	5	8	4,2	M5	23,5	3	7,5	60°	0,26
	16	45	36	5	10	5,2	M6	-	-	10,0	60°	0,37
		64	40	5	10	5,2	M6	29,0	3	10,0	60°	0,37
	20	55	45	8	11	6,8	M8	-	-	10,0	60°	0,63
		76	45	8	11	6,8	M8	35,0	3	10,0	60°	0,63
	25	70	54	11	15	8,6	M10	-	-	12,5	60°	1,24
		94	60	11	15	8,6	M10	43,0	3	12,5	60°	1,24
	30	85	62	12	18	10,3	M12	-	-	12,5	60°	1,90
		106	68	12	15	8,6	M10	50,0	3	12,5	60°	1,90
	40	100	80	17	20	14,25	M16	-	-	16,8	60°	3,72
		124	86	17	18	10,3	M12	66,0	3	16,8	60°	3,72
	50	125	100	13	20	14,0	M16	-	-	21,0	50°	6,19
		160	108	13	20	14,0	M16	76,0	3	21,0	50°	6,19

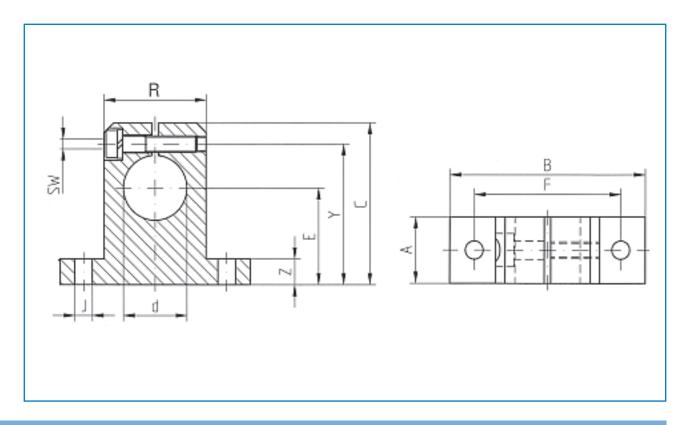
Wellenböcke тур сwв...


für Gehäuseserie CGE

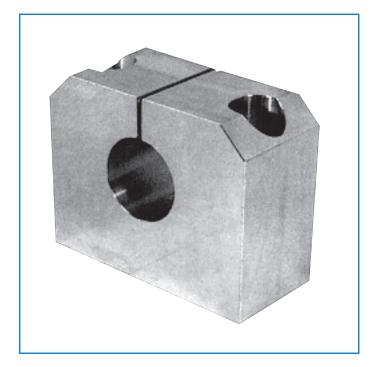
Typenbezeichnung	Abmessi	ungen					
	d mm	A mm	B mm	C mm	E ±0,02 mm	F ±0,12 mm	
CWB 06	6	16	32	27	15	22	
CWB 08	8	16	32	27	16	22	
CWB 10	10	18	40	33	18	27	
CWB 12	12	18	40	33	19	27	
CWB 14	14	20	45	38	20	32	
CWB 16	16	20	45	38	22	32	
CWB 20	20	24	53	45	25	39	
CWB 25	25	28	62	54	31	44	
CWB 30	30	30	67	60	34	49	
CWB 40	40	40	87	76	42	66	
CWB 50	50	50	103	92	50	80	

essungen							Gewicht
H mm	l mm	J mm	K	L mm	Y mm	SW mm	kg
13	8	4,3	M5	11	22	3,0	0,03
13	8	4,3	M5	11	23	2,5	0,03
16	10	5,3	M6	13	27	3,0	0,05
16	10	5,3	M6	13	28	3,0	0,05
18	10	5,3	M6	13	32	3,0	0,07
18	10	5,3	M6	13	33	3,0	0,07
22	11	6,6	M8	18	39	4,0	0,12
26	15	8,4	M10	22	48	4,0	0,17
29	15	8,4	M10	22	54	4,0	0,22
38	18	10,5	M12	26	68	5,0	0,48
46	20	13,5	M16	34	83	6,0	0,82
	H mm 13 13 16 16 18 18 22 26 29 38	H I I mm mm 13 8 13 8 16 10 10 16 10 18 10 18 10 122 11 126 15 29 15 38 18	H I J mm mm 13 8 4,3 13 8 4,3 16 10 5,3 16 10 5,3 18 10 5,3 18 10 5,3 18 10 5,3 22 11 6,6 26 15 8,4 29 15 8,4 38 18 10,5	H I J K M5 mm mm mm 13 8 4,3 M5 13 8 4,3 M5 16 10 5,3 M6 16 10 5,3 M6 18 10 5,3 M6 18 10 5,3 M6 22 11 6,6 M8 26 15 8,4 M10 29 15 8,4 M10 38 18 10,5 M12	H I J K L mm mm mm mm mm 13 8 4,3 M5 11 13 8 4,3 M5 11 13 8 4,3 M5 11 16 10 5,3 M6 13 16 10 5,3 M6 13 18 10 5,3 M6 13 18 10 5,3 M6 13 18 10 5,3 M6 13 22 11 6,6 M8 18 26 15 8,4 M10 22 29 15 8,4 M10 22 38 18 10,5 M12 26	H I J K L Y mm m	H I J K L Y SW mm mm mm mm mm mm 13 8 4,3 M5 11 22 3,0 13 8 4,3 M5 11 23 2,5 16 10 5,3 M6 13 27 3,0 16 10 5,3 M6 13 28 3,0 18 10 5,3 M6 13 32 3,0 18 10 5,3 M6 13 32 3,0 18 10 5,3 M6 13 32 3,0 18 10 5,3 M6 13 33 3,0 22 11 6,6 M8 18 39 4,0 26 15 8,4 M10 22 48 4,0 29 15 8,4 M10 22 54

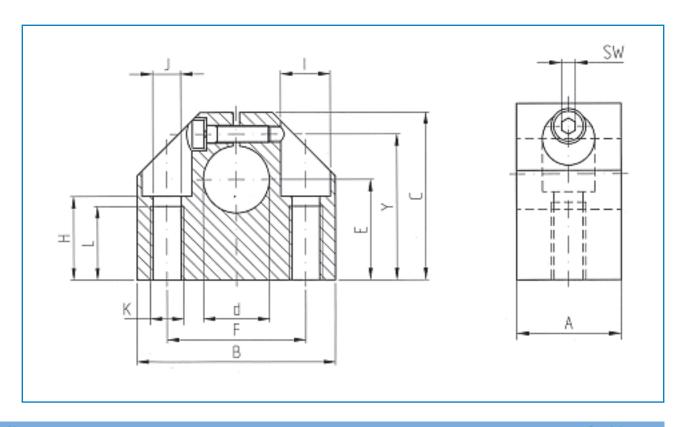
Wellenböcke


Typ WB...

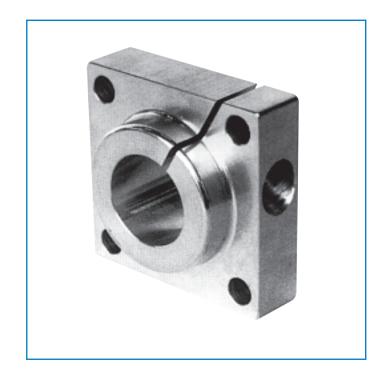
Typenbezeichnung	g Abmessu	ingen					
	d mm	A mm	B mm	C mm	E ±0,015 mm	F ±0,15 mm	
WB 06	6	10	32	27	15	25	
WB 08	8	10	32	27	15	25	
WB 12	12	12	42	35	20	32	
WB 16	16	16	50	42	25	40	
WB 20	20	20	60	50	30	45	
WB 25	25	25	74	58	35	60	
WB 30	30	28	84	68	40	68	
WB 40	40	32	108	86	50	86	
WB 50	50	40	130	100	60	108	
WB 60	60	48	160	124	75	132	
WB 80	80	60	200	160	100	170	


Abmess	sungen					Gewicht
ø mm	J mm	R mm	Z mm	Y mm	SW mm	kg
6	3,5	16	5	22,5	2,5	0,02
8	3,5	16	5	22,5	2,5	0,02
12	4,5	20	5,5	29,0	3,0	0,02
16	4,5	26	6,5	36,0	3,0	0,04
20	4,5	32	8	44,0	3,0	0,07
25	5,5	38	9	51,0	4,0	0,11
30	6,6	45	10	60,0	5,0	0,17
40	9,0	56	12	75,0	6,0	0,29
50	9,0	80	14	90,5	6,0	0,73
60	10,5	100	15	112,0	8,0	1,33
80	13,0	130	22	148,0	10,0	2,81

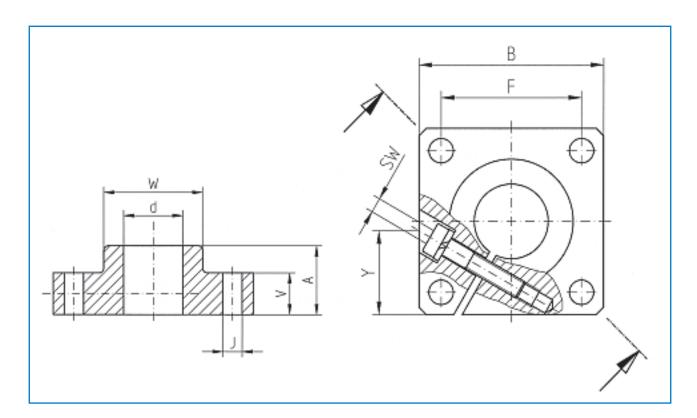
Wellenböcke Leichtbaureihe


Typ LWB...

Typenbezeichnun	ig Abmessu	ıngen					
	d	А	В	С	E ±0,02	F ±0,1	
	mm	mm	mm	mm	mm	mm	
LWB 08	8	18	32	28	15	22	
LWB 12	12	20	43	35	20	30	
LWB 16	16	24	53	42	25	38	
LWB 20	20	30	60	50	30	42	
LWB 25	25	38	78	60	35	56	
LWB 30	30	40	87	70	40	64	
LWB 40	40	48	108	90	50	82	
LWB 50	50	58	132	105	60	100	


	Abmessunge	en						Go	ewicht
ı	ø mm	H mm	l mm	J mm	K	L mm		SW mm	kg
	8	13,0	6	3,5	M4	9	22,5	3	0,04
	12	16,5	10	5,3	M6	13	29,5	4	0,10
	16	21,0	11	6,6	M8	18	36,5	3	0,15
	20	25,0	15	8,4	M10	22	43,5	4	0,23
	25	30,0	18	10,5	M12	26	52,8	5	0,41
	30	34,0	18	10,5	M12	26	60,5	6	0,53
	40	44,0	20	14,0	M16	34	77,0	8	0,99
	50	49,0	26	17,5	M20	43	93,0	8	1,50

Flansch-Wellenböcke


Typ FWB...

Typenbezeic	hnung Abmessung	jen – – – – – – – – – – – – – – – – – – –			
	d	А	В	F ±0,12	J
	mm	mm	mm	mm	mm
FWB 12	12	20	40	30	5,5
FWB 16	16	20	50	35	5,5
FWB 20	20	23	50	38	6,6
FWB 25	25	25	60	42	6,6
FWB 30	30	30	70	54	9,0
FWB 40	40	40	100	68	11,0
FWB 50	50	50	100	75	11,0
FWB 60	60	60	110	85	11,0

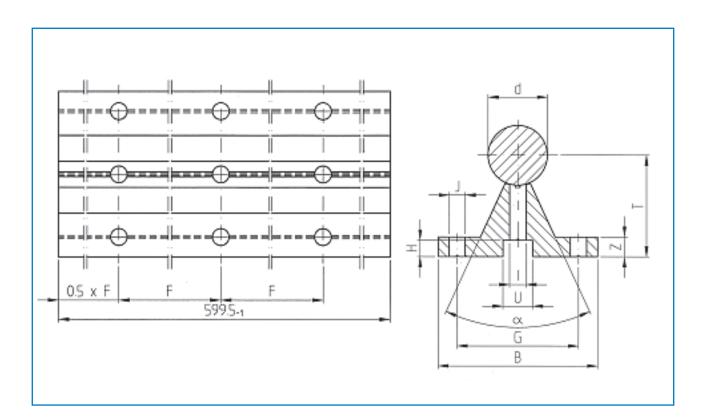
Abmessur	ngen				Gewicht
Ø	V	W	Υ	SW	kg
mm	mm	mm	mm	mm	
12	12	23,5	19,5	3	0,06
16	12	27,5	25,0	3	0,08
20	14	33,5	22,5	4	0,10
25	16	42,0	26,5	5	0,15
30	19	49,5	30,5	6	0,30
40	26	65,0	47,0	8	0,70
50	36	75,0	41,5	8	1,20
60	40	85,0	43,5	8	1,45

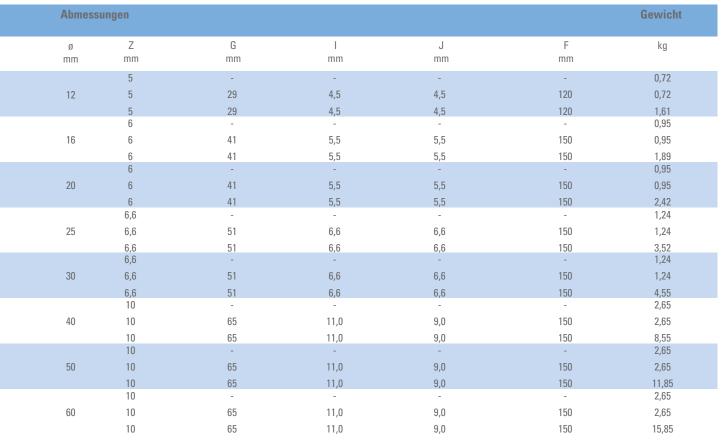
Wellen-Unterstützungen

Fertig bearbeitet, ohne Bohrungen Typ WU...
Fertig bearbeitet, mit Bohrungen Typ WUG...
Mit montierter Welle und
Befestigungsbohrungen Typ WUW...

Zur Unterstützung von Wellen in Verbindung mit Kugelbuchsen Typ OP... oder Gehäuseeinheiten Typ OP... Material: Aluminium

Durchgehend unterstützte Wellen ermöglichen besonders steife Lagerungen, in vielen Fällen genügt jedoch eine abschnittsweise Unterstützung.


Standardlänge Wellenunterstützung: 600 mm Standardlänge Wellen: bis 6000 mm (größere Längen auf Anfrage)



Typenbezeichnung	Abmessungen						
	d mm	α	B mm	H mm	T ±0,02 mm	U mm	
WU 1 WUG 1 WUW 12	12	50°	40	4,5	22,00	8	
WU 2 WUG 2 WUW 16	16	50°	54	5,5	32,00	10	
WU 2 WUG 2 WUW 20	20	50°	54	5,5	34,02	10	
WU 3 WUG 3 WUW 25	25	50°	65	6,8	39,66	12	
WU 3 WUG 3 WUW 30	30	50°	65	6,8	42,19	12	
WU 4 WUG 4 WUW 40	40	50°	85	10,8	60,00	18	
WU 4 WUG 4 WUW 50	50	50°	85	10,8	65,05	18	
WU 4 WUG 4 WUW 60	60	50°	85	10,8	70,10	18	

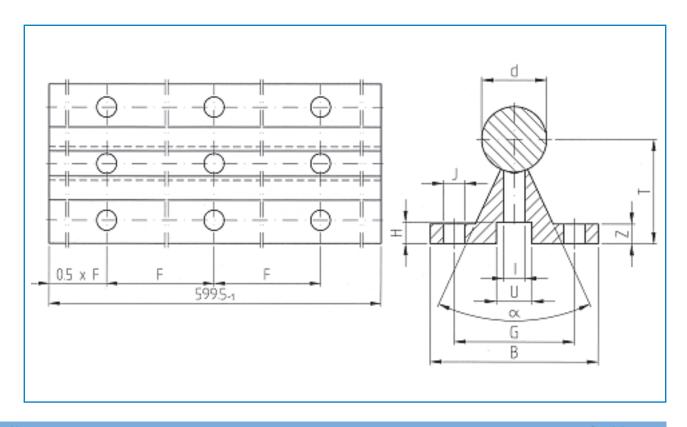
Wellen-Unterstützungen Niedrige Baureihe

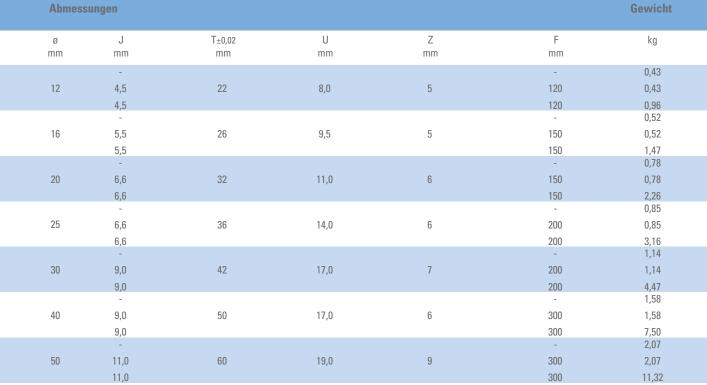
Fertig bearbeitet, ohne Bohrungen Typ LWU... Fertig bearbeitet, mit Bohrungen Typ LWG... Mit montierter Welle und Befestigungsbohrungen Typ LWW...

Zur Unterstützung von Wellen in Verbindung mit Kugelbuchsen Typ OP... oder Gehäuseeinheiten Typ OP...

Material: Aluminium

Durchgehend unterstützte Wellen ermöglichen besonders steife Lagerungen, in vielen Fällen genügt jedoch eine abschnittsweise Unterstützung.


Standardlänge Wellenunterstützung: 600 mm Standardlänge Wellen: bis 6000 mm (größere Längen auf Anfrage)



Typenbezeichnung	Abmessun	gen					
	d mm	α	B mm	G +0,15 mm	H mm	l mm	
LWU 12 LWG 12 LWW 12	12	50°	40	- 29 29	5,0	- 4,5 4,5	
LWU 16 LWG 16 LWW 16	16	50°	45	- 33 33	6,0	- 5,5 5,5	
LWU 20 LWG 20 LWW 20	20	50°	52	- 37 37	6,5	- 6,6 6,6	
LWU 25 LWG 25 LWW 25	25	50°	57	- 42 42	8,5	- 9,0 9,0	
LWU 30 LWG 30 LWW 30	30	50°	69	- 51 51	10,5	- 11,0 11,0	
LWU 40 LWG 40 LWW 40	40	50°	73	- 55 55	10,5	- 11,0 11,0	
LWU 50 LWG 50 LWW 50	50	46°	84	- 63 63	12,5	- 13,0 13,0	

Wellen-Unterstützungen

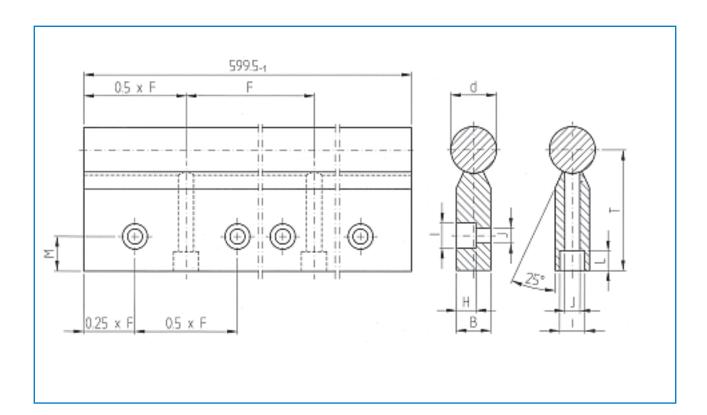
-einreihiges Bohrbild für Einheiten mit seitlicher Öffnung

Typ SWG...-1

Typ SWW...-1

Fertig bearbeitet, mit Befestigungsbohrung Typ SWG...-1 Fertig bearbeitet, mit montierter Welle Typ SWW...-1

Material: Aluminium


Standardlänge Wellenunterstützung: 600 mm Standardlänge Wellen: bis 6000 mm (größere Längen auf Anfrage)

lypenbezeichnu	ing Abmessungen			
	d mm	B mm	H mm	l mm
SWG 20-1 SWW 20-1	20	15	8,5	11
SWG 25-1 SWW 25-1	25	20	11,0	15
SWG 30-1 SWW 30-1	30	25	13,5	18
SWG 40-1 SWW 40-1	40	30	16,0	20
SWG 50-1 SWW 50-1	50	35	18,5	24

Abmes	sungen					Gewicht
ø mm	J mm	L mm	M ±0,15 mm	T ±0,02 mm	F mm	kg
20	6,6	8,5	15	52	100	0,92 2,39
25	9,0	15,0	18	62	120	1,36 3,67
30	11,0	15,3	21	72	150	1,98 5,31
40	14,0	17,5	25	88	200	2,86 8,78
50	16,0	21,5	30	105	200	3,94 13,19

Wellen-Unterstützungen

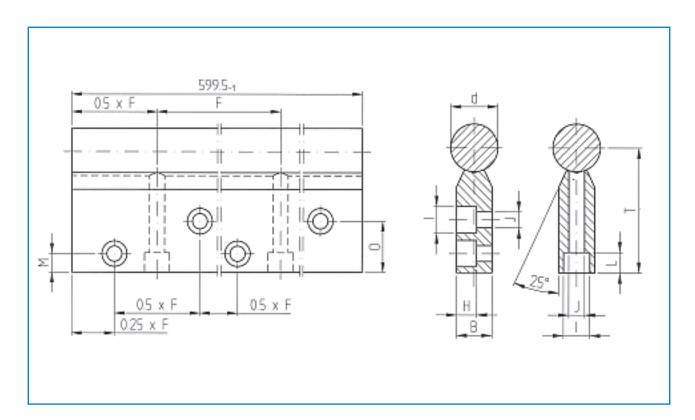
-zweireihiges Bohrbild für Einheiten mit seitlicher Öffnung

Typ SWG...-2

Typ SWW...-2

Fertig bearbeitet, mit Befestigungsbohrung Typ SWG...-2 Fertig bearbeitet, mit montierter Welle Typ SWW...-2

Material: Aluminium


Standardlänge Wellenunterstützung: 600 mm Standardlänge Wellen: bis 6000 mm (größere Längen auf Anfrage)

Typenbezeichnu	ung Abmessungen			
	d	В	Н	I
	mm	mm	mm	mm
SWG 20-2	20	15	8,5	11
SWW 20-2				
SWG 25-2	25	20	11,0	15
SWW 25-2				
SWG 30-2	30	25	13,5	18
SWW 30-2				
SWG 40-2	40	30	16,0	20
SWW 40-2				
SWG 50-2	50	35	18,5	24
SWW 50-2				

Abmess	ungen						Gewicht
ø mm	J mm	L mm	M ±0,15 mm	0 ±0,15 mm	T ±0,02 mm	F	kg
20	6,6	8,5	8	22	52	75	0,90 2,38
25	9,0	15,0	10	26	62	75	1,33 3,64
30	11,0	15,3	12	30	72	100	1,88 5,21
40	14,0	17,5	12	38	88	100	2,65 8,57
50	16,0	21,5	15	45	105	100	3,64 12,89

Wellen-Unterstützungen

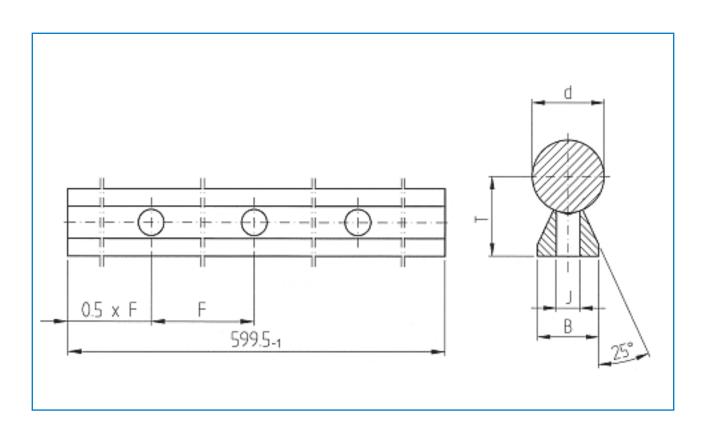
Fertig bearbeitet, ohne Bohrungen Typ NWU... Fertig bearbeitet, mit Bohrungen Typ NWG... Mit montierter Welle Typ NWW...

Material: Aluminium

Durchgehend unterstützte Wellen ermöglichen besonders steife Lagerungen, in vielen Fällen genügt jedoch eine abschnittsweise Unterstützung.

Standardlänge Wellenunterstützung: 600 mm Standardlänge Wellen: bis 6000 mm (größere Längen auf Anfrage)

Abweichende Teilung F auf Wunsch lieferbar.



Typenbezeichnung	Abmessu	ıngen				Gewicht	
	d mm	B ±0,02 mm	T ±0,02 mm	J mm	F mm	kg	
NWU 12 NWG 12 NWW 12	12	11	14,5	- 4,5 4,5	- 75 75	0,13 0,13 0,66	
NWU 16 NWG 16 NWW 16	16	14	18,0	- 5,5 5,5	- 75 75	0,26 0,26 1,20	
NWU 20 NWG 20 NWW 20	20	17	22,0	- 6,6 6,6	75 75 75	0,31 0,31 1,79	
NWU 25 NWG 25 NWW 25	25	21	26,0	9,0 9,0	- 75 75	0,36 0,36 2,67	
NWU 30 NWG 30 NWW 30	30	23	30,0	- 11,0 11,0	- 100 100	0,43 0,43 3,76	
NWU 40 NWG 40 NWW 40	40	30	39,0	13,5 13,5	- 100 100	0,52 0,52 6,44	
NWU 50 NWG 50 NWW 50	50	35	46,0	15,5 - 15,5 15,5	- 100 100	0,64 0,64 9,89	

Präzisions-Stahlwellen

Werkstoffe

Standard

Cf53 (W-Nr. 1.1213) - HRC 62 +/-2

Miniaturwellen ø 4

100 Cr6 (W-Nr. 1.3505) - HRC 60 +2

Hohlwellen

C50 (W-Nr. 1.0540) – HRC 58-63 C60 (W-Nr. 1.0601) – HRC 58-63 **Korrosionsarme Wellen bis Ø 50** X46Cr13 (W-Nr. 1.4034) – HRC 54 +3 **Korrosionsbeständige Wellen bis Ø 50** X90CrMoV18 (W-Nr. 1.4112) – HRC 56 +5 **Säurebeständige Wellen bis Ø 50** X105CrMo17 (W-Nr.1.4125) – HRC 56+5

Hartverchromte Wellen

Cf53 (W-Nr. 1.1213), Chromschichtstärke: 0,008 bis 0,015

h7 max. ø 80

Schichthärte: HRC 65 - 70

Die Präzisionswellen sind mit einem Korrosionsschutzmittel geschützt. Das Schutzmittel muß vor dem Einbau entfernt werden. Präzisionswellen für Kugelbuchsen sind in allen erforderlichen Durchmessern kurzfristig lieferbar. Außerdem sind Zwischengrößen und Sondergrößen lieferbar.

Qualitätsparameter

Oberflächenrauheit Ra 0,15 µm bis 0,3 µm Durchmesser-Toleranz

bis 6 mm: h7 über 6 mm: h6 für SM-Linearlager: g6

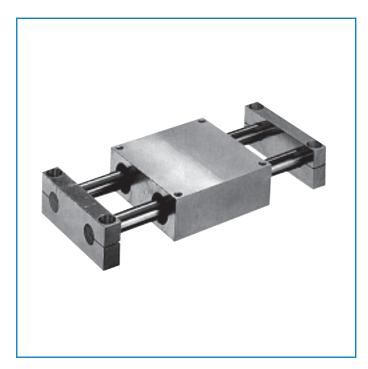
Rundheit < 1/2 Toleranz

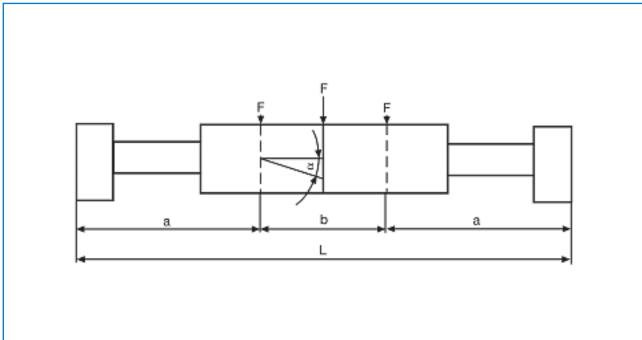
Geradheit

bis ø 10 mm: ≤ 0,3 mm/m von ø 10 mm bis ø 20 mm: ≤ 0,2 mm/m über ø 20 mm: ≤ 0,1 mm/m Alle Qualitätsparameter sind optimal auf den Einsatz von Kugelbuchsen abgestimmt.

Hohlwellen aussen	Hohlwellen innen	Gewicht	Länge	Einhärttiefe
ø mm	ø mm	kg/m	max. mm	
12	4	0,796	6000	1,3 - 1,5
16	7	1,284	6000	1,4 - 1,6
20	14	1,258	6000	1,2 - 2,0
25	15	2,466	6000	0,9 - 1,8
30	19	3,322	6000	0,9 - 1,8
40	26	5,696	6000	1,5 - 2,8
50	28	10,58	6000	1,5 - 2,5
60	36	14,2	6000	2,2 - 3,9

Wellen	Gewicht	Länge	Einhärttiefe	ISC) h6	ISO g6		
ø mm	kg/m	max. mm	gilt bei WNr. 1.1213 ± 0,5 mm	Abmaß oben µm	Abmaß unten µm	Abmaß oben µm	Abmaß unten µm	
3	0,055	300	durchgehärtet	0	-6	-2	-8	
4	0,099	400	durchgehärtet	0	-8	-4	-12	
5	0,154	3500	≥ 0,6	0	-8	-4	-12	
6	0,222	3500	≥ 0,6	0	-8	-4	-12	
8	0,395	4000	0,9	0	-9	-5	-14	
10	0,617	4000	0,9	0	-9	-5	-14	
12	0,888	6000	1,0	0	-11	-	-	
14	1,208	6000	1,2	0	-11	-	-	
15	1,387	6000	1,2	0	-11	-	-	
16	1,578	6000	1,2	0	-11	-	-	
18	1,998	6000	1,6	0	-11	-	-	
20	2,466	6000	1,6	0	-13	-	-	
22	2,984	6000	1,6	0	-13	-	-	
24	3,551	6000	1,8	0	-13	-	-	
25	3,853	6000	1,8	0	-13	-	-	
28	4,834	6000	2,0	0	-13	-	-	
30	5,549	6000	2,0	0	-13	-	-	
32	6,313	6000	2,0	0	-16	-	-	
35	7,553	6000	2,2	0	-16	-	-	
38	8,903	6000	2,2	0	-16	-	-	
40	9,865	6000	2,2	0	-16	-	-	
45	12,45	6000	2,4	0	-16	-	-	
50	15,413	6000	2,4	0	-16	-	-	
60	22,195	6000	2,8	0	-19	-	-	
70	30,210	6000	2,8	0	-19	-	-	
80	39,458	6000	2,8	0	-19	-	-	
100	61,654	6000	4,0	0	-22	-	-	


Quattro-Linearschlitten Einleitung und Erklärung


Quattro-Linearschlitten sind rationelle Komplettlösungen. Die Kombination von präzisen Linearlagern mit integrierten Dichtungen und exakt abgestimmten Gehäusen gewährleisten optimale Positioniereigenschaften.

Qualitätsüberwachte Serienfertigung aller Komponenten ist die Basis für gleichbleibende Präzision und

Quattro-Linearschlitten bieten eine breite Anwendungsvielfalt.

Wirtschaftlichkeit.

Werkstoffe:

Außenmantel

Kugellagerstahl

Kugeln

Chromstahlkugeln Klasse II

Käfige

wärmestabilisierter PA 66

Temperaturbereich

-20 bis +100°C

Bei höheren Temperaturen ist der Einsatz von Lagern mit Stahlkäfig erforderlich.

Wellendurchbiegung

Bei der Auslegung geschlossener Quattro-Linearschlitten ist die maximal zulässige Wellendurchbiegung von 0,5° zu berücksichtigen. Die Durchbiegung errechnet sich nach folgender Formel:

$$tan = \frac{F \times a \times b}{8 \times F \times J}$$

F: Belastung des Schlittens

b: Mittenabstand der Lager (Tabelle 1)

ExJ: Tabelle 1

Wellen	E x J	b
ø mm	N cm ²	mm
8	16,60 x 10 ⁵	35
12	8,36 x 10 ⁶	45
16	26,48 x 10 ⁶	56
20	6,48 x 10 ⁷	71
25	15,84 x 10 ⁷	88
30	32,80 x 10 ⁷	96
40	10,80 x 10 8	134
50	25,32 x 10 8	156

Die angegebenen Tragzahlen gelten unter der Bedingung, dass alle Lager gleichmäßig belastet sind. Wird die offene Baureihe aus Richtung der geöffneten Seite belastet, reduzieren sich die Tragzahlen der Größen 8, 12 und 16 auf 45% und die Größen 20 - 50 auf 60%.

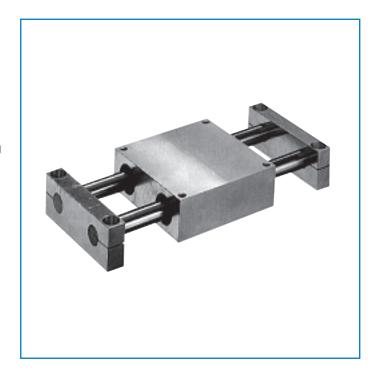
Bestellangaben: Typenbezeichnung Gehäuseblock, Traversen und Gesamtlänge (= Verfahrweg + A + $2 \times B$). Bei der Verwendung von Faltenbälgen verlängert sich die Gesamtlänge um ca. 1/3 bei gegebenem Verfahrweg.

Wellen		Ba	uart	Gewicht kg			
ø mm	QGE ges	chlossen	QGE o	offen	L= Gesar	mtlänge mm	
	C0 stat. N	C dyn. N	C0 stat. N	C dyn. N	geschlosssen	offen	
8	880	1640	-	-	L x 0,0008 + 35	-	
12	1700	3160	2400	2380	L x 0,0018 + 0,80	L x 0,0053 + 0,58	
16	2000	3640	3000	2900	L x 0,003 + 1,25	L x 0,0063 + 0,84	
20	2860	5600	5000	5100	L x 0,005 + 2,50	L x 0,008 + 1,45	
25	3250	6400	8410	9100	L x 0,008 + 4,65	L x 0,0118 + 3,21	
30	5200	11200	10800	11340	L x 0,011 + 6,30	L x 0,0151 + 4,67	
40	7150	16400	18600	20240	L x 0,020 + 12,20	L x 0,0258 + 9,80	
50	12700	32400	28700	29400	L x 0,030 + 21,00	L x 0,0395 + 19,74	

Quattro-Linearschlitten

Geschlossen, mit Stahlkäfig Typ QGE... Geschlossen, mit Kunststoffkäfig Typ QGE...G

Material: Aluminium

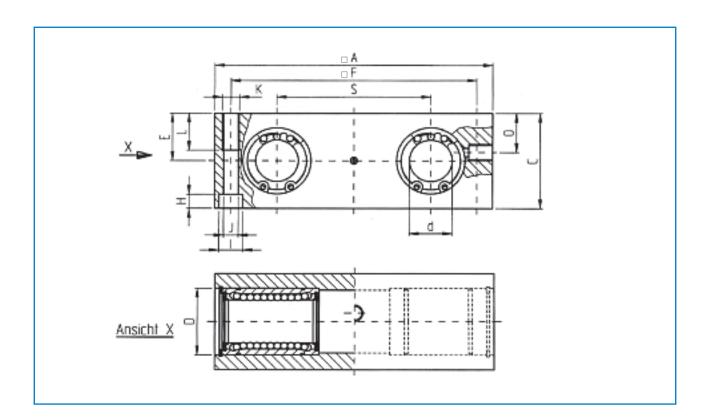

Alle Linearschlitten sind mit beidseitig abgedichteten Kugelbuchsen bestückt. Die Einheiten werden einbaufertig montiert geliefert.

Zum Aufbau einer kompletten Führung sind ausserdem noch erforderlich: 2 Wellen und 2 Traversen.

Rostfreie Ausführung auf Anfrage.

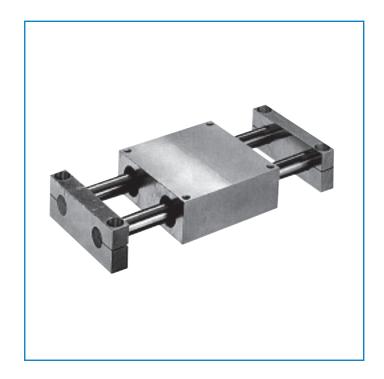
Typenbezeichnung Abmessungen

Auf Wunsch weitere Varianten (z.B. mit Spindelantrieb) erhältlich.



Typombozoromiang	, , , , , , , , , , , , , , , , , , , ,	go					
	d mm	D mm	□A mm	C mm	E +0,01/-0,02 mm	□F mm	H mm
QGE 08 QGE 08 G	8	16	65	23	11,5	55	4,6
QGE 12 QGE 12 G	12	22	85	32	16,0	73	5,7
QGE 16 QGE 16 G	16	26	100	36	18,0	88	5,7
QGE 20 QGE 20 G	20	32	130	46	23,0	115	6,8
QGE 25 QGE 25 G	25	40	160	56	28,0	140	9,0
QGE 30 QGE 30 G	30	47	180	64	32,0	158	11,0
QGE 40 QGE 40 G	40	62	230	80	40,0	202	13,0
QGE 50 QGE 50 G	50	75	280	96	48,0	250	13,0

Abmess	ungen						Gewicht
ø mm	l mm	J mm	K	L mm	O mm	S ±0,02 mm	kg
8	8	4,3	M5	11	8	32	0,27
12	10	5,3	M6	13	13	42	0,60
16	10	5,3	M6	13	15	54	0,90
20	11	6,8	M8	18	19	72	1,88
25	15	9,0	M10	22	24	88	3,65
30	18	10,5	M12	26	27	96	5,14
40	18	13,5	M16	34	35	122	10,22
50	20	13,0	M16	34	43	152	18,00

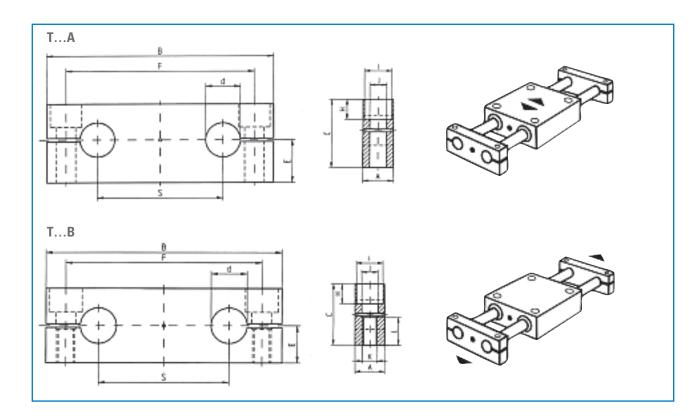


Traversen zu Quattro-Linearschlitten

Typ T...A mit Durchgangsbohrungen
Typ T...B mit Gewindebohrungen

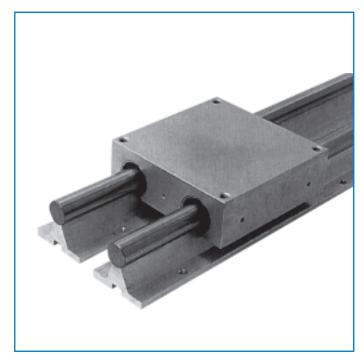
Typenbezeichnung Abmessungen

Material: Aluminium



-//	9	-3				
	d mm	A mm	B mm	F mm	H mm	l mm
T 08 A T 08 B	8	12	65	52	7,0	10
T 12 A T 12 B	12	14	85	70	8,5	11
T 16 A T 16 B	16	18	100	82	10,5	15
T 20 A T 20 B	20	20	130	108	13,5	18
T 25 A T 25 B	25	25	160	132	16,0	20
T 30 A T 30 B	30	25	180	150	16,0	20
T 40 A T 40 B	40	30	230	190	21,0	26
T 50 A T 50 B	50	30	280	240	21,0	26

Abmess	ungen						Gewicht
ø mm	J mm	S ±0,02 mm	C mm	E ±0,015 mm	К	L mm	kg
8	5,5	32	23	12,5	-	-	0,04
			22	11,0	M5	8	0,04
12	6,6	42	32	18,0	-	-	0,09
			28	14,0	M6	12	0,08
16	9,0	54	36	20,0	-	-	0,13
			32	16,0	M8	14	14,00
20	11,0	72	46	25,0	-	-	0,26
			42	21,0	M10	19	0,28
25	13,5	88	56	30,0	-	-	0,49
			52	26,0	M12	24	0,52
30	13,5	96	64	35,0	-	-	0,60
			58	29,0	M12	26	0,62
40	17,5	122	80	44,0	-	-	1,13
			72	36,0	M16	30	1,20
50	17,5	152	96	52,0	-	-	1,70
			88	44.0	M16	34	1.79

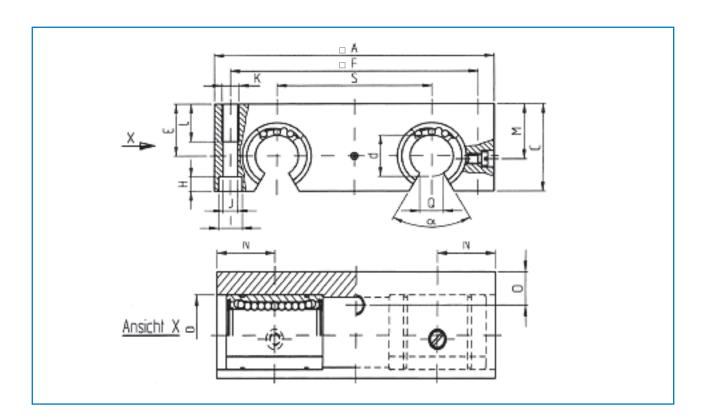


Quattro-Linearschlitten offene Ausführung

Mit Stahlkäfig Typ QGE...OP Mit Kunststoffkäfig Typ QGE...GOP

Material der Gehäuse: Aluminium Alle Linearschlitten sind mit beidseitig abgedichteten Standard-Kugelbuchsen bestückt. Die Einheiten werden einbaufertig montiert geliefert.

Zum Aufbau einer kompletten Führung sind ausserdem noch erforderlich: 2 x Wellenunterstützung mit montierter Welle



Typenbezeichnung	Abmess	sungen							
	d mm	D mm	□ A mm	C mm	E +0,01/-0,02 mm	□ F mm	H mm	l mm	
ΩGE 12 OP ΩGE 12 GOP	12	22	85	30	18	73	5,7	10	
QGE 16 OP QGE 16 GOP	16	26	100	35	22	88	5,7	10	
QGE 20 OP QGE 20 GOP	20	32	130	42	25	115	6,8	11	
QGE 25 OP QGE 25 GOP	25	40	160	51	30	140	9,0	15	
QGE 30 OP QGE 30 GOP	30	47	180	60	35	158	11,0	18	
QGE 40 OP QGE 40 GOP	40	62	230	77	45	202	13,0	18	
QGE 50 OP QGE 50 GOP	50	75	280	93	55	250	13,0	20	

Abmess	ungen									Gewicht
ø mm	J mm	K	L mm	M mm	N mm	O mm	Q mm	S ±0,02 mm	α	kg
12	5,2	M6	13	16,65	19,5	10	7,5	42	60°	0,51
16	5,2	M6	13	22	21,5	12	10,0	54	60°	0,83
20	6,8	M8	18	25	27,0	13	10,0	72	60°	1,59
25	8,6	M10	22	31,5	32,5	15	12,5	88	60°	3,03
30	10,5	M12	26	33	39,5	16	12,5	96	60°	4,47
40	14,0	M16	34	43,5	45,5	20	16,8	122	60°	9,29
50	13,0	M16	34	52,5	55,5	25	21,0	152	50°	16,36

Notizen	

